zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability questions for nonlinear systems in abstract spaces. (English) Zbl 0697.49040
In abstract spaces, we consider certain constrained controllability and approximate controllability properties of a nonlinear system that can be reduced from various controllability properties of its associated linear system. Several examples involving partial differential operators and functional delay operators are given to illustrate the theory.
Reviewer: E.N.Chukwu
MSC:
93B05Controllability
93C10Nonlinear control systems
93C25Control systems in abstract spaces
References:
[1]Fattorini, H. O.,The Time-Optimal Control Problem in Banach Spaces, Applied Mathematics and Optimization, Vol. 1, pp. 163-188, 1974. · Zbl 0295.49009 · doi:10.1007/BF01449028
[2]Narakawa, K.,Boundary-Value Control of Isotropic Elastodynamic Systems with Constrained Control, Journal of Mathematical Analysis Applications, Vol. 93, pp. 250-272, 1983. · Zbl 0534.73016 · doi:10.1016/0022-247X(83)90229-9
[3]LaSalle, J.,The Time-Optimal Control Problem, The Theory of Nonlinear Oscillations, Edited by A. A. Andronov and C. E. Chaikin, Princeton University Press, Princeton, New Jersey, Vol. 5, pp. 1-24, 1959.
[4]Chukwu, E. N.,Finite Time Controllability of a Nonlinear Control Process, SIAM Journal on Control, Vol. 13, pp. 807-816, 1975. · Zbl 0301.93008 · doi:10.1137/0313047
[5]Chukwu, E. N.,Null Controllability in Function Space of Nonlinear Retarded Systems with Limited Control, Journal of Mathematical Analysis and Applications, Vol. 103, pp. 198-210, 1984. · Zbl 0555.93008 · doi:10.1016/0022-247X(84)90169-0
[6]Triggiani, R.,Controllability and Observability in Banach Spaces with Bounded Operators, SIAM Journal on Control, Vol. 3, pp. 462-491, 1975. · doi:10.1137/0313028
[7]Craven, B. D., andNashed, M. Z.,Generalized Implicit Function Theorems When the Derivative Has No Bounded Inverse, Journal of Nonlinear Analysis, Vol. 6, pp. 375-387, 1982. · Zbl 0486.58004 · doi:10.1016/0362-546X(82)90023-2
[8]Markus, L.,Controllability of Nonlinear Processes, SIAM Journal on Control, Vol. 3, pp. 78-90, 1965.
[9]Weiss, L.,On the Controllability of Delay Differential Systems, SIAM Journal on Control, Vol. 5, pp. 575-587, 1967. · Zbl 0183.16402 · doi:10.1137/0305036
[10]Underwood, R. G., andYoung, D. F.,Null Controllability of Nonlinear Functional Differential Equations, SIAM Journal on Control, Vol. 17, pp. 753-772, 1979. · Zbl 0438.93016 · doi:10.1137/0317053
[11]Wong, H. D.,Controllability for Nonlinear Differential Equations in Infinite-Dimensional Spaces, PhD Thesis, University of Minnesota, 1979.
[12]Ahmed, N. U.,Finite-Time Controllability for a Class of Linear Evolution Equations in a Banach Space with Control Constraints, Journal of Optimization Theory and Applications, Vol. 47, pp. 129-158, 1985. · Zbl 0549.49028 · doi:10.1007/BF00940766
[13]Ladas, G. E., andLakshmikantham, V.,Differential Equations in Abstract Spaces, Academic Press, New York, New York, 1972.
[14]Lang, S.,Analysis, Vol. 2, Addison-Wesley, Reading, Massachusetts, 1969.
[15]Hale, J.,Theory of Functional Differential Equations, Springer-Verlag, New York, New York, 1977.
[16]Dieudonne, J.,Foundations of Modern Analysis, Academic Press, New York, New York, 1969.
[17]Chukwu, E. N.,Global Behavior of Retarded Functional Differential Equations. Preprint, North Carolina State University, 1989.
[18]Salamon, D.,Control and Observation of Neutral Systems, Pitman Publishing, Boston, Massachusetts, 1984.
[19]Chukwu, E.,An Estimate for the Solution of Certain Functional Differential Equations of Neutral Type, Nonlinear Phenomena in Mathematical Sciences. Edited by V. Lakshmikantham, Academic Press, New York, New York, 1982.
[20]Chen, G., Mills, W. H., andCrosta, G.,Exact Controllability Theorems and Numerical Simulations for Some Nonlinear Differential Equations, SIAM Journal on Control, Vol. 19, pp. 765-780, 1981. · Zbl 0469.93016 · doi:10.1137/0319050
[21]Triggiani, R.,A Note on the Lack of Exact Controllability for Mild Solutions in Banach Spaces, SIAM Journal on Control, Vol. 15, pp. 407-411, 1977. · Zbl 0354.93014 · doi:10.1137/0315028
[22]Triggiani, R.,On the Lack of Exact Controllability for Mild Solutions in Banach Spaces, Journal of Mathematical Analysis and Applications, Vol. 50, pp. 438-446, 1975. · Zbl 0305.93013 · doi:10.1016/0022-247X(75)90033-5
[23]Russell, D. L.,Controllability and Stability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions, SIAM Review, Vol. 20, pp. 639-739, 1978. · Zbl 0397.93001 · doi:10.1137/1020095
[24]Pazy, A.,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, New York, 1983.
[25]Chukwu, E. N.,The Time-Optimal Control of Nonlinear Delay Equations, Operator Methods for Optimal Control Problems, Edited by S. J. Lee, Marcel Dekker, New York, New York, 1988.
[26]Papageorgiou, N. S.,Existence of Optimal Controls for Nonlinear Systems in Banach Spaces, Journal of Optimization Theory and Applications, Vol. 53, pp. 481-489, 1987.
[27]Chukwu, E. N.,The Time Optimal Control Theory of Nonlinear Systems of Neutral Type, Nonlinear Analysis and Applications, Edited by V. Lakshmikantham, Marcel Dekker, New York, New York, 1987.
[28]Triggiani, R.,Controllability, Observability, and Stabilizability of Dynamical Systems in Banach Space with Bounded Operators, PhD Thesis, University of Michigan, 1973.
[29]Nakagiri, S.,Optimal Control of Linear Retarded Systems in Banach Spaces, Journal of Mathematical Analysis and Applications, Vol. 120, pp. 169-210, 1986. · Zbl 0603.49005 · doi:10.1016/0022-247X(86)90210-6
[30]Barmish, B. R., andSchmitendorf, W. E.,A Necessary and Sufficient Condition for Local Constrained Controllability of Linear Systems, IEEE Transactions on Automatic Control, Vol. AC-25, pp. 97-100, 1980. · Zbl 0426.93012 · doi:10.1109/TAC.1980.1102241
[31]Curtain, R. F., andPritchard, A. J.,Infinite-Dimensional Linear System Theory, Springer-Verlag, New York, New York, 1978.
[32]Ladas, G. E., andLakshmikantham, V.,Differential Equations in Abstract Spaces, Academic Press, New York, New York, 1972.
[33]Chukwu, E. N.,Control of Linear Systems, Preprint, North Carolina State University, 1990.