zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Admissible wave fans in nonlinear hyperbolic systems. (English) Zbl 0707.35091

The quasi-linear hyperbolic system

t U(x,t)+ x F(U(x,t))=0

is investigated. The author describes several well known conditions for admissible shock waves and wave fans (i.e. solutions U(x,t) of the form U(x,t)=V(x/t))·

The main object of the paper is the discussion of the entropy rate admissibility criterion for wave fans, which was introduced by the author [J. Differ. Equations 14, 202-212 (1973; Zbl 0262.35038)]. In particular, it is shown that the entropy condition implies the admissibility criterion of Liu for wave fans of moderate strength.

Reviewer: L.Brüll

MSC:
35L67Shocks and singularities
References:
[1]Burton, C. V., On plane and spherical sound-waves of finite amplitude. Philosophical Magazine, Ser. 5, 35, 317–333 (1893).
[2]Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Analysis 17, 1–46 (1964).
[3]Coleman, B. D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Analysis 13, 167–177 (1963). · Zbl 0113.17802 · doi:10.1007/BF01262690
[4]Conlon, J., & T.-P. Liu, Admissibility criteria for hyperbolic conservation laws. Indiana U. Math. J. 30, 641–652 (1981). · Zbl 0587.58048 · doi:10.1512/iumj.1981.30.30050
[5]Dafermos, C. M., The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Diff. Eqs. 14, 202–212 (1973). · Zbl 0262.35038 · doi:10.1016/0022-0396(73)90043-0
[6]Dafermos, C. M., Solution of the Riemann problem for a class of hyperbolic conservation laws by the viscosity method. Arch. Rational Mech. Analysis 52, 1–9 (1973). · Zbl 0262.35034 · doi:10.1007/BF00249087
[7]Dafermos, C. M., Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws. Arch. Rational Mech. Analysis 53, 203–217 (1974). · Zbl 0278.35065 · doi:10.1007/BF00251384
[8]Dafermos, C. M., & R. J. DiPerna, The Riemann problem for certain classes of hyperbolic systems of conservation laws. J. Diff. Eqs. 20, 90–114 (1976). · Zbl 0323.35050 · doi:10.1016/0022-0396(76)90098-X
[9]DiPerna, R. J., Singularities of solutions of nonlinear hyperbolic systems of conservation laws. Arch. Rational Mech. Analysis 60, 75–100 (1975). · Zbl 0324.35062 · doi:10.1007/BF00281470
[10]Glimm, J., The interactions of nonlinear hyperbolic waves. Comm. Pure Appl. Math. 41, 569–590 (1988). · Zbl 0635.35067 · doi:10.1002/cpa.3160410505
[11]Godunov, S. K., An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961). English translation: Soviet Math. 2, 947–949 (1961).
[12]Hattori, H., The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Isothermal case. Arch. Rational Mech. Analysis 92, 247–263 (1986). · Zbl 0673.76084 · doi:10.1007/BF00254828
[13]Hattori, H., The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Nonisothermal case. J. Diff. Eqs. 65, 158–174 (1986). · Zbl 0659.76076 · doi:10.1016/0022-0396(86)90031-8
[14]Hattori, H., The entropy rate admissibility criterion and the double phase boundary problem. Contemporary Math. 60, 51–65 (1987).
[15]Hsiao, L., The entropy rate admissibility criterion in gas dynamics. J. Diff. Eqs. 38, 226–238 (1980). · Zbl 0439.76059 · doi:10.1016/0022-0396(80)90006-6
[16]Isaacson, E., Marchesin, D., Plohr, B., & B. Temple, The classification of solutions of quadratic Riemann problems. SIAM J. Appl. Math. 48, 1009–1032 (1988). · Zbl 0688.35056 · doi:10.1137/0148059
[17]James, R. D., The propagation of phase boundaries in elastic bars. Arch. Rational Mech. Anal. 73, 125–158 (1980). · Zbl 0443.73010 · doi:10.1007/BF00258234
[18]Jouguet, E., Sur la propagation des discontinuités dans les fluides. C. R. Acad. Sci. Paris 132, 673–676 (1901).
[19]Keyfitz, B. L., & H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal. 72, 219–241 (1980). · Zbl 0434.73019 · doi:10.1007/BF00281590
[20]Lax, P. D., Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10, 537–566 (1957). · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[21]Lax, P.D., Shock waves and entropy. Contributions to Nonlinear Functional Analysis (E. H. Zarantonello ed.), pp. 603–634. New York: Academic Press, 1971.
[22]Liu, T.-P., The Riemann problem for general systems of conservation laws. J. Diff. Eqs. 18, 218–234 (1975). · Zbl 0297.76057 · doi:10.1016/0022-0396(75)90091-1
[23]Liu, T.-P., Admissible solutions of hyperbolic conservation laws. Memoirs Am. Math. Soc. 240, 1–78 (1981).
[24]Majda, A., & R. Pego, Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56, 229–262 (1985). · Zbl 0543.76100 · doi:10.1016/0022-0396(85)90107-X
[25]Oleinik, O. A., Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation. Uspehi Mat. Nauk (N.S.), 14, 165–170 (1959). English translation: Am. Math. Soc. Transl. 33, 285–290.
[26]Rankine, W. J. M., On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Roy. Soc. Lond. 160, 277–288 (1870). · doi:10.1098/rstl.1870.0015
[27]Riemann, B., Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Gött. Abh. Math. Cl. 8, 43–65 (1860).
[28]Schaeffer, D. G., & M. Shearer, The classification of 2×2 systems of non-strictly hyperbolic conservation laws with application to oil recovery. Comm. Pure Appl. Math. 40, 141–178 (1987). · Zbl 0673.35073 · doi:10.1002/cpa.3160400202
[29]Shearer, M., Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type. Arch. Rational Mech. Anal. 93, 45–59 (1986). · Zbl 0613.35048 · doi:10.1007/BF00250844
[30]Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81, 301–315 (1983). · Zbl 0505.76082 · doi:10.1007/BF00250857
[31]Slemrod, M., A limiting ”viscosity” approach to the Riemann problem for materials exhibiting change of phase. Arch. Rational Mech. Anal. 105, No. 4 (1989).
[32]Stokes, G. G., On a difficulty in the theory of sound. Philosophical Magazine 33, 349–356 (1848).
[33]Stokes, G. G., On a difficulty in the theory of sound. Mathematical and Physical Papers, Vol. II, pp. 51–55. Cambridge University Press, 1883.
[34]Strutt, J. W. (Lord Rayleigh), The Theory of Sound, Vol. II, London: Macmillan 1878.
[35]Strutt, J. W. (Lord Rayleigh), Note on tidal bores. Proc. Roy. Soc. London A 81, 448–449 (1908). · doi:10.1098/rspa.1908.0102
[36]Strutt, J. W. (Lord Rayleigh), Aerial plane waves of finite amplitude. Proc. Roy. Soc. London A 84, 247–284 (1911).
[37]Truesdell, C., & R. Toupin, The Classical Field Theories. Handbuch der Physik (S. Flügge, Ed.), Vol. III/1, pp. 226–793. Berlin-Göttingen-Heidelberg: Springer-Verlag, 1960.
[38]Tupciev, V. A., On the method for introducing viscosity in the study of problems involving the decay of a discontinuity. Dokl. Akad. Nauk SSSR, 211, 55–58 (1973). English translation: Soviet Math. 14, 978–982 (1973).
[39]Volpert, A. I., The space BV and quasilinear equations. Mat. Sbornik, 73 (115), 255–302 (1967). English translation: Math. USSR Sbornik 2, 225–267 (1967).
[40]Weber, H., Die Partiellen Differential-Gleichungen der Mathematischen Physik, Zweiter Band. Vierte Auflage. Braunschweig: Friedrich Vieweg und Sohn, 1901.
[41]Wendroff, B., The Riemann problem for materials with nonconvex equation of state. Part I: Isentropic flow. Part II: General flow. J. Math. Anal. Appl. 38, 454–466; 640–658 (1972). · Zbl 0264.76054 · doi:10.1016/0022-247X(72)90103-5