zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal maintenance policies for single-server queueing systems subject to breakdowns. (English) Zbl 0708.60084

Summary: We consider a single-server queueing system with Poisson arrivals and general service times. While the server is up, it is subject to breakdowns according to a Poisson process. When the server breaks down, we need to repair the server immediately by initiating one of two available repair operations. The operating costs of the system include customer holding costs, repair costs and running costs. The objective is to find a corrective maintenance policy that minimizes the long-run average operating costs of the system.

The problem is formulated as a semi-Markov decision process. Under some mild conditions on the repair time and service time distributions and the customer holding cost rate function, we prove that there exists an optimal stationary policy which is monotone, i.e., which is characterized by a single threshold parameter: The stochastically faster repair is initiated if and only if the number of customers in the system exceeds this threshold.

We also present an efficient algorithm for the determination of an optimal monotone policy and its average cost. We then extend the problem to allow the system to postpone the repair until some future point in time. We provide a partial characterization of an optimal policy and show that monotone policies are, in general, not optimal. The latter problem also extends the authors’ previous work.

MSC:
60K10Applications of renewal theory
60K25Queueing theory
90C40Markov and semi-Markov decision processes
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
90B22Queues and service (optimization)