zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ramanujan’s notebooks. Part II. (English) Zbl 0716.11001
New York etc.: Springer-Verlag. xi, 359 p. DM 168.00 (1989).

Let me begin with an extended excerpt from George Andrews’ review of Part I of this series of books (1985) (there will be four in all when Berndt finishes) in Zbl 0555.10001. “In 1957, the Tata Institute of Fundamental Research in Bombay published unedited photostatic copies of Ramanujan’s Notebooks. These Notebooks were prepared in the years 1903-1913 by Ramanujan before he went to England for his historic collaboration with G. H. Hardy. In the 1930’s, G. N. Watson and B. M. Wilson started to edit the Notebooks; unfortunately Wilson died and the project was abandoned. Finally the mathematical community has available a readable version of Ramanujan’s Notebooks with rigorous proofs (seldom even hinted at in the original Notebooks) and relevent references. This is a beautiful job, and every mathematician owes Bruce Berndt warm thanks.”

Berndt has been at work on this project for more than a decade. His patience, precision, thoroughness and dedication are evident on each page. A typical entry has the following form: Ramanujan’s words are given in italics. Proofs and discussion follow in roman font. The “relevent references” alluded to above range from the mid-18th Century to the day before yesterday. The discussions are lively and offer glimpses into the frustrations - and rewards - of this is endeavor. More on this below. As one would expect, obtaining proofs of Ramanujan’s results not already in the literature required collaborators. There is a table in the Introduction listing these previously published works; R. Evans and R. Lamphere were the main contributors. As Berndt remarks, these proofs, which rely on function theory, must be quite different from those of Ramanujan.

As to the contents, the Introduction contains a fine and careful summary. Then, each chapter has a head note giving a more precise summary and pointing to highlights contained therein. The second Notebook is an enlarged edition of the first. Part I of the Berndt’s series covered Chapters 1-9 of this second Notebook. In Part II we have Chapters 10-15. Here are the chapter titles: Chapter 10 is Hypergeometric Series I. Chapter 11 is Hypergeometric Series II. Chapter 12 is Continued Fractions (the analytic theory - reviewer). Chapter 13 is Integrals and Asymptotic Expansions. Chapter 14 is Infinite Series and Chapter 15 is Asymptotic Expansions and Modular Forms (warning: Ramanujan’s definition of modular equation is not the standard one). Ramanujan gave no Chapter titles, so Berndt has supplied them. Main Entries are very often followed by Corollaries and Examples. As Berndt states, “Ramanujan possessed the uncanny ability for finding the most important examples of theorems,...”. Here Berndt shows his flair for understatement! These examples are exquisite, gorgeous. If you love Euler, you’ll love these jewels.

As Berndt and others have noted, Ramanujan probably borrowed his expository style - notably the nearly complete suppression of proof - from the only high level text he studied before leaving for England, Carr’s ‘A Synopsis of Elementary Results in Pure Mathematics’. This has left Berndt with a job with aspects sometimes akin to that of a mathematical archeologist: One turns an object over and over and tries to deduce what was in the mind of the maker. The fact that the maker in this case was an Olympian only amplifies the situation. Here two examples of this process that intrigued the reviewer. Berndt’s Introduction tells us that Entry 24 of Hypergeometric Series II (Chapter 11) is “By far, the most interesting... (in the Chapter)”. The paragraph following the statement of Corollary 2 of this entry begins thus: “We cannot see how Corollary 2 would follow from Entry 24.” How many man/weeks of frustration are implied by this sentence?

This volume marks the half-way point of Berndt’s edition of the Ramanujan Notebooks. Volume Three is in its final stages at Springer-Verlag. One cannot but marvel at the consistant quality here; and all wish him - and his co-workers - Godspeed as they move nearer completion of this noble effort.

Reviewer: M.Sheingorn

11-02Research monographs (number theory)
11-03Historical (number theory)
01A60Mathematics in the 20th century
33-03Historical (special functions)
41-03Historical (approximations and expansions)
40-03Historical (sequences, series, summability)