zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuum theory of dense rigid suspensions. (English) Zbl 0716.76012
Summary: A continuum theory of rigid suspensions is introduced. Balance laws and constitutive equations of micropolar continuum theory are modified and extended for the characterization of dense rigid suspensions. Thermodynamic restrictions are imposed. The general theory is specialized to the case of dense rigid fiber and spherical suspensions. Dilute suspensions in Newtonian fluids are obtained as special cases. Motions of rigid fiber suspensions in viscometric flows are determined as applications of the theory.
MSC:
76A10Viscoelastic fluids
References:
[1]Eringen A Cemal (1980) Theory of Anisotropic Micropolar Fluids. Int J Engng Sci 18:5-17 · Zbl 0436.76006 · doi:10.1016/0020-7225(80)90003-8
[2]Eringen A Cemal (1966) Theory of Micropolar Fluids. J Math Mech 16:1-18
[3]Eringen A Cemal (1972) Theory of Microfluids. J Math Anal and Appl 38:480-496 · Zbl 0241.76012 · doi:10.1016/0022-247X(72)90106-0
[4]Eringen A Cemal (1984) A Continuum Theory of Rigid Suspensions. Int J Engng Sci 22:1373-1388 · Zbl 0545.76120 · doi:10.1016/0020-7225(84)90027-2
[5]Eringen A Cemal (1985) Rigid Suspensions in Viscous Fluid. Int J Engng Sci 23:491-495 · Zbl 0605.76112 · doi:10.1016/0020-7225(85)90095-3
[6]Batchelor GK (1970) The Stress System in a Suspension of Force-free Particles. J Fluid Mech 41:545-570 · Zbl 0193.25702 · doi:10.1017/S0022112070000745
[7]Batchelor GK (1971) The Stress Generated in a Nondilute Suspension of Elongated Particles by Pure Straining Motion. J Fluid Mech 46:813-829 · Zbl 0225.76003 · doi:10.1017/S0022112071000879
[8]Mewis J, Metzner AB (1974) The Rheological Properties of Suspensions of Fibres in Newtonian Fluids Subjected to Extensional Deformations. J Fluid Mech 62:593-600 · doi:10.1017/S0022112074000826
[9]Bark FH, Tinoco H (1978) Stability of Plane Poiseuille Flow of a Dilute Suspensions of Slender Fibres. J Fluid Mech 87:321-333 · Zbl 0378.76040 · doi:10.1017/S0022112078001627
[10]Shaqfeh Eric SG, Fredrickson GH (1990) The Hydrodynamic Stress in Suspension of Rods. Phy Fluids A2(1):7-24, Jan.
[11]Russel WB, Gast AP: (1986) Nonequilibrium Statistical Mechanics of Concentrated Colloidal Dispersions: Hard Spheres in Weak Flows. J Chem Phys 84, No. 3, 1825-1826, Feb.
[12]de Kruif CG, Vanlersel EMF, Vrij A (1985) Hard Sphere Colloidal Dispersions: Viscosity as a Function of Shear Rate and Volume Fraction. J Chem Phys 83 (9):4717-4725, 1 Nov. · doi:10.1063/1.448997
[13]Eringen A Cemal (1964) Simple Micro-fluids. Int J Engng Sci 2:189-203 · Zbl 0138.21202 · doi:10.1016/0020-7225(64)90004-7
[14]Eringen A Cemal (1978) Micropolar Theory of Liquid Crystals. In: Johnson JF, Porter RS (eds) Liquid Crystals and Ordered Fluids, Vol. 3. Plenum Publishing Co
[15]Jefferey GB (1922) Proc Roy Soc A 102:161 · doi:10.1098/rspa.1922.0078
[16]Leal LG, Hinch EJ (1973) Theoretical Studies of a Suspension of Rigid Particles Affected by Brownian Couples. Rheol Acta 12:127-132 · doi:10.1007/BF01635092
[17]Johnson SJ, PhD thesis Simultaneous Dichroism and Birefringence Measurements of Sheared Colloidal Suspensions in Polymeric Liquids. Stanford University, Stanford, CA
[18]Fuller GG (1990) Optical Rheometry. Ann Rev Fluid Mechanics 22:387-417 · doi:10.1146/annurev.fl.22.010190.002131