zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite difference schemes on grids with local refinement in time and space for parabolic problems. I: Derivation, stability, and error analysis. (English) Zbl 0721.65047
A finite-volume method with mesh refinement is proposed for the parabolic equation t u= x (a x u)+ y (a y u)+f on a set Ω×[0,T], where Ω is a domain in the plane. It is assumed that refinement is done by adding points to a given coarse grid. Furthermore, the temporal grid is refined wherever the spatial grid is refined. Finally, the method is used implicitly, so that the matrix equation for a single coarse time step includes a number of fine time steps. The boundary condition between the coarse and fine grids is implemented so as to be conservative. An energy inequality is used to prove stability and convergence of the method.

65M06Finite difference methods (IVP of PDE)
65M50Mesh generation and refinement (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
35K15Second order parabolic equations, initial value problems
65M15Error bounds (IVP of PDE)
[1]Adams, R. A.: Sobolev spaces. New York: Academic Press 1975.
[2]Aziz, K., Settari, A.: Petroleum Reservior Simulation, London: Applied Science Publishers 1979.
[3]Babuska, I., Rheinboldt, W. C.: A posteriori error estimates for the finite element method. Int. J. Numer. Meth.,12 (1978), 1597–1615. · Zbl 0396.65068 · doi:10.1002/nme.1620121010
[4]Babuska, I., Rheiboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.,15 (4) (1978), 736–754. · Zbl 0398.65069 · doi:10.1137/0715049
[5]Bramble, J. H., Ewing, R. E., Pasciak, J. E., Schatz, A. H.: A preconditioning technique for the efficient solution of problems with local grid refinement. Comp. Meth. Appl. Eng.,67 (1988), 149–159. · Zbl 0619.76113 · doi:10.1016/0045-7825(88)90122-3
[6]Diaz, A. R., Kikuchi, N., Taylor, J. I.: A method of grid optimization for finite element methods. Comp. Meth. Appl. Mech. Eng.,41 (1983), 29–45. · Zbl 0516.73070 · doi:10.1016/0045-7825(83)90051-8
[7]Ewing, R. E.: Efficient adaptive procedures for fluid flow applications. Comp. Meth. Appl. Mech. Eng.,55 (1986), 89–103. · Zbl 0572.76096 · doi:10.1016/0045-7825(86)90087-3
[8]Ewing, R. E., Lazarov, R. D., Vassilevski, P. S.: Local refinement techniques for elliptic problems on cell-centered grids. Preprint #1988-16, Institute for Scientific Computation, University of Wyoming, 1988.
[9]Kreiss, H. O., Manteuffel, T. A., Swartz, B., Wendroff, B., White, A. B. Jr.: Superconvergence schemes on irregular grid. Math. Comput.,47 (1986), 537–554. · doi:10.1090/S0025-5718-1986-0856701-5
[10]Manteuffel, T. A., White, A. B. Jr.: The numerical solution of second order boundary value problems on nonuniform meshes. Math. Comput.,47 (1986), 511–535. · Zbl 0635.65093 · doi:10.1090/S0025-5718-1986-0856700-3
[11]McCormick, S.: Fast adaptive composite grid (FAC) methods: theory for the variational case. Comput. Suppl.,5 (1984), 115–121.
[12]McCormick, S., Thomas, J.: The fast adaptive composite grid (FAC) method for elliptic equations. Math. Comput.,46 (1986), 439–456. · doi:10.1090/S0025-5718-1986-0829618-X
[13]Oden, J. T., Demkowicz, L., Strouboulis, T., Devloo, P.: Adaptive methods for problems in solid and fluid mechanics. In Accuracy Estimates and Adaptive Refinement in Finite Element Computations, I. Babuska et al., eds., Wiley, New York, 1986, 249–280.
[14]Pedrosa, O. A. Jr.: Use of Hybrid Grid in Reservoir Simulation, Ph.D. Thesis, Stanford University, 1984.
[15]Quandalle, P., Besset, P.: Reduction of grid effects due to local sub-gridding in simulations using a composite grid. Paper SPE 13527, presented at the SPE 1985 Reservoir Simulation Symposium, Dallas, February 1985.
[16]Samarskii, A. A.: Homogeneous difference schemes on non-uniform nets for equations of parabolic type. USSR Comput. Math. and Math. Phys.,3 (1963), 351–393. · Zbl 0139.10901 · doi:10.1016/0041-5553(63)90025-9
[17]Samarskii, A. A.: Introduction to Theory of Difference Schemes, p. 468, Moscow: Nauka 1971 (Russian).
[18]Samarskii, A. A.: Local one dimensional difference schemes on non-uniform nets. USSR Comput. Math. and Math. Phys.,3 (1963), 572–619. · Zbl 0273.65079 · doi:10.1016/0041-5553(63)90290-8
[19]Samarskii, A. A., Lazarov, R. D., Makarov, V. L.: Difference Schemes for Differential Equations having Generalized Solutions, p. 296, Moscow: Vysshaya Shkola Publishers, 1987 (Russian).
[20]Tikhonov, A. N., Samarskii, A. A.: Homogeneous difference schemes on nonuniform nets. USSR Comput. Math. Phys.,2 (1962), 927–953. · Zbl 0128.36702 · doi:10.1016/0041-5553(63)90505-6
[21]Weiser, A., Wheeler, M. F.: On convergence of block-centered finite-differences for elliptic problems. SIAM J. Numer. Anal.,25 (1988), 351–375. · Zbl 0644.65062 · doi:10.1137/0725025
[22]Eriksson, K.: Adaptive finite element methods for linear parabolic problems. II. A priori error estimates ofL (L 2). Technical Report, Department of Mathematics, Chalmers University of Technology, Goteborg, 1988.
[23]Eriksson, K.: Adaptive finite element methods for linear parabolic problems. III. A priori error estimates inL (L ). Technical Report, Department of Mathematics, Chalmers University of Technology, Goteborg, 1988.
[24]Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV. Time steps variable in space (to appear).
[25]Herox, M. A., Thomas, J. W.: TDFAC: A composite grid method for time dependent problems. Proceedings Fourth Copper Mountain Conference on Multigrid Methods, 1989.
[26]Ewing, R. E., Lazarov, R. D., Pasciak, J. E., Vassilevski, P. S.: Finite element methods for parabolic problems with time steps variable in space. Preprint #1989-05, Institute for Scientific Computation, University of Wyoming, 1989.
[27]Matus, P. P.: On a class of difference schemes for transient boundary value problems. Inst. Math., Minsk Acad. Sci. BSSR, Preprint23, 1989.
[28]Ewing, R. E., Lazarov, R. D., Vassilevski, P. S.: Finite difference schemes on grids with local refinement in time and space for parabolic problems. II: Optimal order two-grid iterative methods. Proceedings, Sixth GAMM Seminar on Parallel Methods for PDEs, Kiel, January 22–24, 1990, to appear in Notes in Numerical Fluid Mechanics, Vieweg-Braunsweig, 1990.