×

Grothendieck’s problem on profinite completions and representations of groups. (English) Zbl 0722.20020

A. Grothendieck [Manuscr. Math. 2, 375-396 (1970; Zbl 0239.20065)] posed a problem on profinite completions which is presented in this paper as Problem 1: Let u: \(G_ 1\to G_ 2\) be a homomorphism of finitely generated residually finite groups such that its extension to their profinite completions \(\hat u:\) \(\hat G_ 1\to \hat G_ 2\) is an isomorphism. Must u be an isomorphism as well? The authors of this paper found a counterexample [Dokl. Akad. Nauk SSSR 288, 1054-1058 (1986; Zbl 0614.20016)], so Grothendieck’s problem is solved negatively in the general case. But in this example G is not finitely presented, hence Problem 1 still remains open for finitely presented groups.
In the second part of the paper, the connection of Grothendieck’s problem with representation theory are discussed. Platonov has raised the following two problems. Problem 2: Let \(G_ 2\) be an arithmetic (S- arithmetic) subgroup of an algebraic group G defined over a number field k. Suppose that the congruence kernel \(C^ 2(G(K))\) is finite. Then does Problem 1 have an affirmative solution for \(G_ 2?\) Problem 3: Let \(\Gamma\) be a finitely generated linear group such that dim \(X_ n(\Gamma)=0\) for n where \(X_ n(\Gamma)\) is the algebraic variety of all n-dimensional characters. Is \(\Gamma\) isomorphic to a group of arithmetic type, i.e. commensurable with a direct product of a finite number of S- arithmetic groups? In this part, it is proved that when \(G_ i\) are linear groups and dim \(X_ n(G_ i)=0\) for any n, then the positive solution of Problem 3 implies the positive solution of Problem 1 for u. It is also shown that if \(G\subset GL_ m(Z_ S)\) such that dim \(X_ n(G)=0\) for any n, and G and its Zariski closure \(\bar G(Z_ S)\) have finite congruence kernels then if Problem 2 has a positive solution, then G is arithmetic.

MSC:

20E18 Limits, profinite groups
20G30 Linear algebraic groups over global fields and their integers
20E36 Automorphisms of infinite groups
20E26 Residual properties and generalizations; residually finite groups
20E07 Subgroup theorems; subgroup growth
20F05 Generators, relations, and presentations of groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bass, H.: Groups of integral representation type, Pacific J. Math. 86 (1980), 15-51. · Zbl 0444.20006
[2] Culler, M. and Shalen, P.: Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117 (1983), 109-146. · Zbl 0529.57005 · doi:10.2307/2006973
[3] Grothendieck, A.: Representations lineaires et compactification profinie des groupes discrets, Manusc. Math. 2 (1970), 375-396. · Zbl 0239.20065 · doi:10.1007/BF01719593
[4] Hall, M., Jr.: Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. · Zbl 0035.01301 · doi:10.1090/S0002-9947-1949-0032642-4
[5] Hall, P.: On the finiteness of certain soluble groups, Proc. London Math. Soc. 9 (1959), 595-622. · Zbl 0091.02501 · doi:10.1112/plms/s3-9.4.595
[6] Hoare, A. H. M., Karrass, A., and Solitar D.: Subgroups of infinite index in Fuchsian groups, Math. Z. 125 (1972), 59-69. · Zbl 0223.20054 · doi:10.1007/BF01111114
[7] Ihara, G.: On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235. · Zbl 0158.27702 · doi:10.2969/jmsj/01830219
[8] Lyndon, R. C. and Schupp, P. E.: Combinatorial Group Theory, Springer-Verlag, Berlin (1977). · Zbl 0368.20023
[9] Lubotzky, A.: Tannaka duality for discrete groups, Amer. J. Math. 102 (1980), 663-689. · Zbl 0449.20051 · doi:10.2307/2374092
[10] Lubotzky, A. and Magid, A.: Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. (336) 58 (1985), 1-117. · Zbl 0598.14042
[11] Nori, M. V.: On subgroups of GLn(Fp), Invent. Math. 88 (1987), 257-275. · Zbl 0632.20030 · doi:10.1007/BF01388909
[12] Platonov, V. P.: Arithmetic theory of algebraic groups, Russian Math. Surveys 37 (1982), 3-54. · Zbl 0513.20028 · doi:10.1070/RM1982v037n03ABEH003230
[13] Platonov, V. P.: Rings and varieties of representations of finitely generated groups, Voprosy Algebry 4 (1988), 36-40 (in Russian). · Zbl 0765.20011
[14] Platonov, V. P.: A geometrical approach to the representation theory of finitely generated groups, Lect. Notes in Math. (to appear).
[15] Platonov, V. P. and Tavgen’, O. I.: On Grothendieck’s problem of profinite completions of groups, Soviet Math. Dokl. 33 (1986), 822-825. · Zbl 0614.20016
[16] Procesi, C.: The invariant theory n{\(\times\)}n matrices, Adv. Math. 19 (1976), 306-381. · Zbl 0331.15021 · doi:10.1016/0001-8708(76)90027-X
[17] Raghunathan, M. S.: On the congruence subgroup problem, Publ. Math. IHES 46 (1976), 107-161. · Zbl 0347.20027
[18] Seminaire de Geometrie Algebrique. 1. Revêtements étale et groupe fondamental, Springer, Heidelberg (1971).
[19] Serre, J.-P.: Arbres, amalgames, SL2, Astérisque 46 (1977).
[20] Stallings, J. R.: Graphical theory of automorphisms of free groups, Ann. Math. Stud. 111 (1987), 107-120. · Zbl 0619.20011
[21] Tavgen’, O. I.: Grothendieck’s problem in the class of soluble groups, Doklady Academii Nauk BSSR 31 (1987), 873-876 (in Russian). · Zbl 0657.20023
[22] Tavgen’, O. I.: On Grothendieck’s and Platonov’s conjectures, Doklady Academii Nauk BSSR 32 (1988), 489-492 (in Russian). · Zbl 0656.20048
[23] Tits, J.: Free subgroups in linear groups, J. Algebra 20 (1974), 250-270. · Zbl 0236.20032 · doi:10.1016/0021-8693(72)90058-0
[24] Grunewald, F.: On some groups which cannot be finitely presented, J. London Math. Soc. (2) 17 (1978), 427-436. · Zbl 0385.20020 · doi:10.1112/jlms/s2-17.3.427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.