zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kripke semantics for knowledge representation logics. (English) Zbl 0726.03023
The author shows how Kripke structures are determined by information systems, which then enables us to provide modal logics for knowledge representation in a natural way. She discusses the axiomatization of logics thus defined and extends the Kripke modeling in order to deal with temporal aspects of information or to give reasonings about objects and their properties.

MSC:
03B60Other nonclassical logic
68T30Knowledge representation
68T27Logic in artificial intelligence
03B45Modal logic, etc.
03B80Applications of logic
References:
[1]R. Carnap,Meaning and Necessity, Chicago, 1974.
[2]A. Church,A formulation of the logic of sense and denotation, In: P. Henle et al. (eds.),Structure, Method and Meaning, New York, 1951.
[3]L. Farinas del Cerro andE. Orłowska,DAL – a logic for data analysis,Theoretical Computer Science 36 (1985), pp. 251–264. · Zbl 0565.68032 · doi:10.1016/0304-3975(85)90046-5
[4]G. Frege,Ueber sinn und bedeutung,Zeitschrift fuer Philosophische Kritik 100 (1892), pp. 25–50.
[5]G. Gargov,Two completeness theorems in the logic for data analysis, ICS PAS Reports 581. 1986.
[6]T. B. Iwiński,Algebraic approach to rough sets,Bulletin of the PAS, Mathematics 35 (1987), pp. 673–683.
[7]D. Kaplan,Foundations of Intensional Logic, University of California, Los Angeles, 1964.
[8]S. Kripke,Semantical analysis of modal logic I,Zeitschrift fuer Mathematische Logik und Grundlagen der Mathematik 9 (1963), pp. 67–96. · Zbl 0118.01305 · doi:10.1002/malq.19630090502
[9]R. Montague,Pragmatics, In: R. Klibansky (ed.),Contemporary philosophy-la philosophie contemporaine. Florence, 1968.
[10]J. Nieminen,Rough tolerance equality and tolerance black boxes,Fundamenta Informaticae 11 (1988), pp. 289–296.
[11]E. Orłowska,Dynamic information systems,Fundamenta Informaticae 5 (1982), pp. 101–118.
[12]E. Orłowska,Semantics of vague concepts, In: G. Dorn and P. Weingartner (eds.),Foundations of Logic and Linguistics. Problems and Solutions.Selected Contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg, Plenum Press, New York, 1983, pp. 465–482.
[13]E. Orłowska,Logic of nondeterministic information,Studia Logica XLIV (1985), pp. 93–102.
[14]E. Orłowska,Logic for reasoning about knowledge,Zeitschrift fuer Mathematische Logik nd Grundlagen der Mathematik, to appear.
[15]E. Orłowska,Kripke models with relative accessibility relations and their applications to inferences from incomplete information, In: G. Mirkowska and H. Rasiowa (eds.),Mathematical Problems in Computation Theory,Banach Center Publications 21, Polish Scientific Publishers, Warsaw, 1987, pp. 327–337.
[16]E. Orłowska andZ. Pawlak,Representation of nondeterministic information,Theoretical Computer Science 29 (1984), pp. 27–39. · Zbl 0537.68098 · doi:10.1016/0304-3975(84)90010-0
[17]Z. Pawlak,Information systems-theoretical foundations,Information Systems 6 (1981), pp. 205–218. · Zbl 0462.68078 · doi:10.1016/0306-4379(81)90023-5
[18]Z. Pawlak,Rough sets,International Journal of Computer and Information Sciences 11 (1982), pp. 341–350. · Zbl 0501.68053 · doi:10.1007/BF01001956
[19]J. Pomykała,Approximation operations in approximation space,Bulletin of the PAS, Mathematics 35 (1987), pp. 653–662.
[20]V. R. Pratt,Application of modal logic to programming,Studia Logica XXXIX (1980), pp. 255–274.
[21]D. Scott,An advice on modal logic, In: K. Lambert (ed.),Philosophical Problems in Logic: Some Recent Developments, Dordrecht, 1970, pp. 143–173.
[22]K. Segerberg,Applying modal logic,Studia Logica XXXIX (1980), pp. 275–295. · Zbl 0457.03014 · doi:10.1007/BF00370325
[23]D. Vakarelov,Abstract characterization of some knowledge representation systems and the logic NIL of nondeterministic information, In: D. Skordev (ed.),Mathematical Logic and applications.Proceedings of the 1986 Goedel Conference,Druzhba, Bulgaria, Plenum Press, New York, 1987.
[24]D. Vakarelov,Modal logics for knowledge representation, to appear.
[25]M. K. Valiev,Bazy dannych i wremiennaja logika,Naucznotechniczeskoje sowieszczenie ’Logiko-algebraiczeskije modeli predstawlenia znanij’, 1983 (In Russian).
[26]J. van Benthem,A Manual of Intensional Logic, Lecture Notes of the Center for the Study of Language and Information. Stanford University, 1985.
[27]W. Żakowski,Approximations in the space (U, π),Demonstratio Mathematicae 16 (1983), pp. 761–769.