zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A four-step phase-fitted method for the numerical integration of second order initial-value problems. (English) Zbl 0726.65089

A four-step method with phase-lag of infinite order is developed for the numerical integration of second order initial-value problems of the form: y '' (x)=f(x,y),y(x 0 )=y 0 ,y ' (x 0 )=y 0 ' · Examples occur in celestial mechanics, in quantum mechanical scattering problems and elsewhere.

The idea is to maintain a free parameter α in the method such that the method to be fitted to an oscillatory component of the theoretical solution. Applications of the new method have been done in two problems.

The first is the “almost periodic” problem studied by E. Stiefel and D. G. Bettis [Numer. Math. 13, 154-175 (1969; Zbl 0219.65062)]: z '' +z=0·001e ix ,z(0)=1,z ' (0)=0·9995i,zC and the other is the resonance problem of the one-dimensional Schrödinger equation: y '' (x)=f(x)y(x), x[0,), with f(x)=W(x)-E, W(x)=(+1)/x 2 +V(x),, E is the energy (E). In both problems the new suggested method is more accurate than other methods with minimal phase-lag, especially for large step-sizes.

65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
34C25Periodic solutions of ODE
34L40Particular ordinary differential operators
[1]M. M. Chawla and P. S. Rao,A Numerov-type method with minimal phase-lag for the numerical integration of second order periodic initial-value problem, J. Comput. Appl. Math. 11 (1984), 277–281. · Zbl 0565.65041 · doi:10.1016/0377-0427(84)90002-5
[2]M. M. Chawla and P. S. Rao,A Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problem. II. Explicit method, J. Comput. Appl. Math. 15 (1986), 329–337.
[3]M. M. Chawla, P. S. Rao and B. Neta,Two-step fourth-order P-stable methods with phase-lag of order six for y”=f(t,y), J. Comput. Appl. Math. 16 (1986), 233–236. · Zbl 0596.65047 · doi:10.1016/0377-0427(86)90094-4
[4]M. M. Chawla and P. S. Rao,An explicit sixth-order method with phase-lag or order eight for y”=f(t,y), J. Comput. Appl. Math. 17 (1987), 365–368. · Zbl 0614.65084 · doi:10.1016/0377-0427(87)90113-0
[5]R. M. Thomas,Phase properties of high order, almost P-stable formulae, BIT 24 (1984), 225–238. · Zbl 0569.65052 · doi:10.1007/BF01937488
[6]P. J. Van der Houwen and B. P. Sommeijer,Predictor-corrector methods for periodic second-order initial-value problems, IMA J. Num. Anal. 7 (1987), 407–422. · Zbl 0631.65074 · doi:10.1093/imanum/7.4.407
[7]J. P. Coleman,Numerical methods for y”=f(x,y) via rational approximations for the cosine, IMA J. Num. Anal. 9 (1989), 145–165. · Zbl 0675.65072 · doi:10.1093/imanum/9.2.145
[8]E. Stiefel and D. G. Bettis,Stabilization of Cowell’s method, Num. Math. 13 (1969), 154–175. · Zbl 0219.65062 · doi:10.1007/BF02163234
[9]P. Henrici,Discrete Variable Methods in Ordinary Differential Equations, (1962), 311, John Wiley and Sons.
[10]R. K. Jain, N. S. Kambo and R. Goel,A sixth-order P-stable symmetric multistep method for periodic initial-value problems of second-order differential equations, IMA J. Num. Anal. 4 (1984), 117–125. · Zbl 0539.65053 · doi:10.1093/imanum/4.1.117
[11]A. D. Raptis,Two-step methods for the numerical solution of the Schrödinger equation, Computing 28 (1982), 373–378. · Zbl 0473.65060 · doi:10.1007/BF02279820
[12]R. A. Buckingham,Numerical Solution of Ordinary and Partial Differential Equations, (1962), Pergamon Press.
[13]J. W. Cooley,An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields, Math. Comput. 15 (1961), 363–374.
[14]L. Brusa and L. Nigro,A one-step method for direct integration of structural dynamic equations, Internat. J. Numer. Meth. Engng. 15 (1980), 685–699. · Zbl 0426.65034 · doi:10.1002/nme.1620150506
[15]W. Liniger and R. A. Willoughby,Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Num. Anal. 7 (1970), 47–66. · Zbl 0187.11003 · doi:10.1137/0707002