zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pontryagin’s principle in the control of semilinear elliptic variational inequalities. (English) Zbl 0728.49003
The paper refers to an optimal control problem for a system governed by a semilinear variational inequality of elliptic type. Approximate optimality conditions are obtained using Ekeland’s principle; passing to the limit, these conditions lead to optimality conditions for the stated problem.
Reviewer: C.Simionescu

MSC:
49J40Variational methods including variational inequalities
References:
[1]Agmon S., Douglis A., Nirenberg L. (1959) Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12:623-727 · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2]Barbu V. (1984) Optimal Control of Variational Inequalities. Lecture Notes in Mathematics, Vol. 100. Pitman, London
[3]Barbu V., Tiba D. (1989) Optimal control of abstract variational inequalities. Proc. Fifth IFAC Symp. Control of Distributed Parameter Systems, June 26-29, Perpignan (A. El Jai, ed.)
[4]Bonnans J. F., Casas E. (1991) Un principe de Pontryagine pour le contrôle des systèmes semilinéaires elliptiques. J. Differential Equations 89, to appear
[5]Bonnans J. F., Casas E. (1989) Maximum principles in the optimal control of semilinear elliptic systems. Proc. Fifth IFAC Symp. Control of Distributed Parameter Systems, June 26-29, Perpignan (A. El Jai, ed.)
[6]Bonnans J. F., Casas E. (1989) Optimal control of state constrained multistate systems. SIAM J. Control Optim. 27:446-455 · Zbl 0667.49014 · doi:10.1137/0327023
[7]Brezis H. (1972) Problèmes unilatéraux. J. Math. Pures Appl. 51:1-168
[8]Clarke F. H. (1983) Optimization and Nonsmooth Analysis. Wiley, New York
[9]Ekeland I. (1972) Sur les problèmes variationnels. C. R. Acad. Sci. Paris 275:1057-1059
[10]Ekeland I. (1979) Nonconvex minimization problems. Bull. Amer. Math. Soc. (NS) 1:447-474 · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6
[11]Haraux A. (1977) How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29:615-631 · Zbl 0387.46022 · doi:10.2969/jmsj/02940615
[12]Ioffe A. D., Tihomirov V. (1974) Theory of Extremal Problems. Nauka, Moscow (in Russian; English translation: 1979, North Holland, Amsterdam)
[13]Kinderlehrer D., Stampacchia G. (1980) An Introduction to Variational Inequalities and Their Applications. Academic Press, New York
[14]Mignot F. (1976) Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22:130-185 · Zbl 0364.49003 · doi:10.1016/0022-1236(76)90017-3
[15]Saguez C. (1980) Contrôle optimal de systèmes à frontière libre. Thèse d’état, Université de Compiègne
[16]Tiba D. (1984) Quelques remarques sur le contrôle de la corde vibrante avec obstacle. C. R. Acad. Sci. Paris, 229:1-13
[17]Tiba D. (1984) Some remarks on the control of the vibrating string with obstacle. Rev. Roumaine Math. Pures Appl. 29:899-906
[18]Tiba D. (1987) Optimal control for second-order semilinear hyperbolic equations. Control Theory Adv. Technol. 3:33-43
[19]Tiba D. (1990) Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Mathematics, Vol. 1459. Springer-Verlag, Berlin
[20]Yvon J. P. (1973) Etude de quelques problèmes de contrôle pour des systèmes distribués. Thèse d’état, Université de Paris VI