zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A search for integrable bilinear equations: The Painlevé approach. (English) Zbl 0729.35133
Summary: The possibility of the existence of new integrable partial differential equations is investigated, using the tools of singularity analysis. The equations treated are written in the Hirota bilinear formalism. It is shown here how to apply the Painlevé method directly under the bilinear form. Just by studying the dominant part of the equations, the number of cases to be considered can be limited drastically. Finally, the partial differential equations identified in a previous work of the third author [J. Math. Phys. 28, 1732-1742, 2094-2101 and 2586-2592 (1987; Zbl 0641.35073, Zbl 0658.35081 and Zbl 0658.35082); 29, No.3, 628-635 (1988; Zbl 0684.35082)] as possessing at least four soliton solutions, are shown to pass the Painlevé test as well, which is a strong indication of their integrability.
MSC:
35Q58Other completely integrable PDE (MSC2000)
35Q51Soliton-like equations