zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the finite volume element method. (English) Zbl 0731.65093
The author considers the problem -·(Au)=f on a polygonal domain Ω 2 with u=0 on Γ 0 , Au·n=g on Γ 1 , Γ 0 Γ 1 =Ω, A uniformly elliptic. The author considers piecewise linear functions v on a regular triangularization of Ω, b ij (v)=- γ ij (Av)·n ij ds for γ ij an edge connecting triangle interior points (consistently taken as either circumcenters, orthocenters, incenters, or centroids), and the linear operator B defined by (Bv) i = j b ij (v)· He gives conditions under which B will be uniformly elliptic, and under those conditions derives estimates on the discretization error.

MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
References:
[1]Adams, R.A.: Sobolev spaces. Ed. New York: Academic Press 1975
[2]Baliga, B.R., Patankar, S.V.: A new finite-element formulation for convection-diffusion problems. Numer. Heat Transfer3, 393-409 (1980) · doi:10.1080/01495728008961767
[3]Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal.24, 777-787 (1987) · Zbl 0634.65105 · doi:10.1137/0724050
[4]Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7, 112-124 (1970) · Zbl 0201.07803 · doi:10.1137/0707006
[5]Cai, Z.: A theoretical foundation of the finite volume element method. Ph. D. Thesis, University of Colorado at Denver, May 1990
[6]Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. (to appear)
[7]Cai, Z., McCormick, S.: On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal.27, 636-655 (1990) · Zbl 0707.65073 · doi:10.1137/0727039
[8]Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam. North-Holland 1978
[9]Ewing, R.E., Lazarov, R.D., Vassilevski, P.S.: Local refinement techniques for elliptic problems on cell-centered grids. Univ. Wyoming E.O.R.I. rep. no 1888-16
[10]Hachbusch, W.: On first and second order box schemes. Computing41, 277-296 (1989) · Zbl 0649.65052 · doi:10.1007/BF02241218
[11]Heinrich, B.: Finite difference methods on irregular networks. Basel: Birkh?user 1987
[12]Kadlec, J.: On the regularity of the solution of the Poisson equation on a domain with boundary locally similar to the boundary of a convex domain. Czechoslovak Math. J.14, 386-393 (1964)
[13]Kreiss, H.O., Manteuffel, T.A., Swartz, B., Wendroff, B., White, A.B.: Supraconvergent schemes on irregular grids. Math. Comput.47, 537-554 (1986) · doi:10.1090/S0025-5718-1986-0856701-5
[14]Manteuffel, T.A., White, A.B.: The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comput.47, 511-535 (1986) · Zbl 0635.65093 · doi:10.1090/S0025-5718-1986-0856700-3
[15]McCormick, S., Thomas, J.: The fast adaptive composite grid method (FAC) for elliptic boundary value problems. Math. Comput.6, 439-456 (1986)
[16]Ne?as, J.: Les m?thodes directes en th?orie des equations elliptiques. Paris: Masson 1967
[17]Oganesjan, A., Ruchovec, L.A.: Variational methods of solving elliptic equations (in Russian). Erevan, Izd. AN Arm. SSR, 1979
[18]Zl?mal, M.: On the finite element method. Numer. Math.12, 394-409 (1968) · Zbl 0176.16001 · doi:10.1007/BF02161362