zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal impulsive space trajectories based on linear equations. (English) Zbl 0732.49025
The problem of minimizing the total characteristic velocity of a spacecraft having linear equations of motion and finitely many instantaneous impulses that result in jump discontinuities in velocity is considered. Fixed time and fixed end conditions are assumed. This formulation is flexible enough to allow some of the impulses to be specified a priori by the mission planner. Necessary and sufficient conditions for solution of this problem are found without using specialized results from control theory or optimization theory. Solution of the two point boundary value problem is reduced to a problem of solving a specific set of equations. If the times of the impulses are specified, these equations are at most quadratic. Although this work is restricted to linear equations, there are situations where it has potential application. Some examples are the computation of the velocity increments of a spacecraft near a real or fictitious satellite or space station in a circular or more general Keplerian orbit. Another example is the computation of maneuvers of the spacecraft near a libration point of the restricted three-body problem.
Reviewer: T.E.Carter
49N70Differential games in calculus of variations
49N75Pursuit and evasion games in calculus of variations
93C05Linear control systems
[1]Neustadt, L. W.,Optimization, a Moment Problem, and Nonlinear Programming, SIAM Journal on Control, Vol. 2, pp. 33-53, 1964.
[2]Neustadt, L. W.,A General Theory of Minimum-Fuel Space Trajectories, SIAM Journal on Control, Vol. 3, pp. 317-356, 1965.
[3]Edelbaum, T. N.,Minimum-Impulse Transfers in the Near Vicinity of a Circular Orbit, Journal of the Astronautical Sciences, Vol. 14, pp. 66-73, 1967.
[4]Jones, J. B.,Optimal Rendezvous in the Neighborhood of a Circular Orbit, Journal of the Astronautical Sciences, Vol. 24, pp. 53-90, 1976.
[5]Prussing, J. E.,Illustration of the Primer Vector in Time-Fixed Orbit Transfers, AIAA Journal, Vol. 7, pp. 1167-1168, 1969. · doi:10.2514/3.5297
[6]Prussing, J. E.,Optimal Two- and Three-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit, AIAA Journal, Vol. 8, pp. 1211-1228, 1970. · Zbl 0197.21302 · doi:10.2514/3.5876
[7]Prussing, J. E.,Optimal Four-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit, AIAA Journal, Vol. 7, pp. 928-935, 1969. · Zbl 0175.21703 · doi:10.2514/3.5246
[8]Prussing, J. E., andClifton, R. S.,Optimal Multiple-Impulse Satellite Avoidance Maneuvers, Paper No. AAS-87-543, AAS/AIAA Astrodynamics Specialist Conference, Kalispell, Montana, 1987.
[9]Jezewski, D. J., andDonaldson, J. D.,An Analytic Approach to Optimal Rendezvous Using the Clohessy-Wiltshire Equations, Journal of the Astronautical Sciences, Vol. 27, pp. 293-310, 1979.
[10]Jezewski, D.,Primer Vector Theory Applied to the Linear Relative-Motion Equations, Optimal Control Applications and Methods, Vol. 1, pp. 387-401, 1980. · Zbl 0454.49016 · doi:10.1002/oca.4660010408
[11]Wheelon, A. D.,Midcourse and Terminal Guidance, Space Technology, Wiley, New York, New York, 1959.
[12]Clohessy, W. H., andWiltshire, R. S.,Terminal Guidance System for Satellite Rendezvous, Journal of the Aerospace Sciences, Vol. 27, pp. 653-658, 674, 1960.
[13]Geyling, F. T.,Satellite Perturbations from Extra-Terresrial Gravitation and Radiation Pressure, Journal of the Franklin Institute, Vol. 269, pp. 375-407, 1960. · Zbl 0141.23004 · doi:10.1016/0016-0032(60)90173-3
[14]Spradlin, L. W.,The Long-Time Satellite Rendezvous Trajectory, Aerospace Engineering, Vol. 19, pp. 32-37, 1960.
[15]De Vries, J. P.,Elliptic Elements in Terms of Small Increments of Position and Velocity Components, AIAA Journal, Vol. 1, pp. 2626-2629, 1963. · doi:10.2514/3.2124
[16]Tschauner, J., andHempel, P.,Rendezvous zu ein Min Elliptischer Bahn Umlaufenden Ziel, Astronautica Acta, Vol. 11, pp. 104-109, 1965.
[17]Shulman, Y., andScott, J.,Terminal Rendezvous for Elliptical Orbits, AIAA Paper No. 66-533, AIAA 4th Aerospace Sciences Meeting, Los Angeles, California, 1966.
[18]Euler, E. A.,Optimal Low-Thrust Rendezvous Control, AIAA Journal, Vol. 7, pp. 1140-1144, 1969. · Zbl 0179.53704 · doi:10.2514/3.5287
[19]Weiss, J.,Solution of the Equation of Motion for High Elliptic Orbits, Technical Note PRV-5, No. 7/81, ERNO Reumfahrttechnik, Bremen, Germany, 1981.
[20]Carter, T., andHumi, M.,Fuel-Optimal Rendezvous Near a Point in General Keplerian Orbit, Journal of Guidance, Control, and Dynamics, Vol. 10, pp. 567-573, 1987. · Zbl 0659.93042 · doi:10.2514/3.20257
[21]Carter, T.,Effects of Propellant Mass Loss on Fuel-Optimal Rendezvous Near Keplerian Orbit, Journal of Guidance, Control, and Dynamics, Vol. 12, pp. 19-26, 1989. · doi:10.2514/3.20363
[22]Carter, T.,New Form for the Optimal Rendezvous Equations Near a Keplerian Orbit, Journal of Guidance, Control, and Dynamics, Vol. 13, pp. 183-186, 1990. · Zbl 0702.49027 · doi:10.2514/3.20533
[23]Szebehely, V.,Theory of Orbits, Academic Press, New York, New York, 1967.
[24]Lawden, D. F.,Optimal Trajectories for Space Navigation, Butterworths, London, England, 1963.
[25]Lion, P. M.,A Primer on the Primer, STAR Memo No. 1, Department of Aerospace and Mechanical Engineering, Princeton University, Princeton, New Jersey, 1967.
[26]Lion, P. M., andHandelsman, M.,Primer Vector on Fixed-Time Impulsive Trajectories, AIAA Journal, Vol. 6, pp. 127-132, 1968. · Zbl 0158.43305 · doi:10.2514/3.4452
[27]Carter, T.,How Many Intersections Can a Helical Curve Have with the Unit Sphere During One Period?, American Mathematical Monthly, Vol. 93, pp. 41-44, 1986. · Zbl 0601.49027 · doi:10.2307/2322542
[28]Carter, T.,Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point in Circular Orbit, Journal of Guidance, Control, and Dynamics, Vol. 7, pp. 710-716, 1984. · Zbl 0551.93034 · doi:10.2514/3.19917