zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Anisotropic spheres in general relativity. (English) Zbl 0734.76094
Summary: A prescription originally conceived for perfect fluids is extended to the case of anisotropic pressures. The method is used to obtain exact analytical solutions of the Einstein equations for spherically-symmetric self-gravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric.

MSC:
76Y05Quantum hydrodynamics; relativistic hydrodynamics
References:
[1]Bayin, S. S.: 1982,Phys. Rev. D26, 1262. · doi:10.1103/PhysRevD.26.1262
[2]Berger, S., Hojman, R., and Santamarina, J.: 1987,J. Math. Phys. 28, 2949. · Zbl 0634.76131 · doi:10.1063/1.527697
[3]Bowers, R. and Liang, E.: 1974,Astrophys. J. 188, 657. · doi:10.1086/152760
[4]Canuto, V.: 1973,Neutron Stars: General Review, Solvay Conference on Astrophysics and Gravitation, Brussels, Belgium.
[5]Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.: 1981,J. Math. Phys. 22, 118. · Zbl 0483.70003 · doi:10.1063/1.524742
[6]Díaz, M. C. and Hojman, R.: 1990,J. Math. Phys. 31, 140. · Zbl 0706.76142 · doi:10.1063/1.528873
[7]Herrera, L. and Ponce de Leon, J.: 1985,J. Math. Phys. 26, 2018. · doi:10.1063/1.526872
[8]Lemaître, G.: 1933,Ann. Soc. Sci., Bruxelles A53, 97.
[9]Letelier, P. S.: 1980,Phys. Rev D22 807. · doi:10.1103/PhysRevD.22.807
[10]Maharaj, S. D. and Maartens, R.: 1989,Gen Rel. Grav. 21, 899. · doi:10.1007/BF00769863
[11]Patiño, A. and Rago, H.: 1989,Gen. Rel. Grav. 21, 637. · doi:10.1007/BF00760624
[12]Ponce de Leon, J.: 1987,J. Math. Phys. 28, 1114. · Zbl 0651.76052 · doi:10.1063/1.527557
[13]Ruderman, M.: 1972,Ann. Rev. Astron. Astrophys. 10, 427. · doi:10.1146/annurev.aa.10.090172.002235
[14]Tolman, R.: 1939,Phys. Rev. 55 364. · doi:10.1103/PhysRev.55.364