zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Additive Schwarz algorithms for parabolic convection-diffusion equations. (English) Zbl 0737.65078
See the preview in Zbl 0723.65075.
MSC:
65M55Multigrid methods; domain decomposition (IVP of PDE)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65F10Iterative methods for linear systems
65F35Matrix norms, conditioning, scaling (numerical linear algebra)
35K15Second order parabolic equations, initial value problems
References:
[1]Babu?ka, I. (1972): The mathematical foundations of the finite element method, with applications to partial differential equations, A.D. Aziz ed. Academic Press, New York London
[2]Bj?rstad, P.E., Widlund, O.B. (1986): Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal.23, 1093-1120
[3]Bramble, J.H. (1966): A second order finite difference analogue of the first biharmonic boundary value problem. Numer. Math.9, 236-249 · Zbl 0154.41105 · doi:10.1007/BF02162087
[4]Bramble, J.H., Pasciak, J.E., Schatz, A.H. (1986): The construction of preconditioners for elliptic problems by substructuring, I. Math. Comput.47, 103-134 · doi:10.1090/S0025-5718-1986-0842125-3
[5]Bramble, J.H., Pasciak, J.E., Schatz, A.H. (1987): The construction of preconditioners for elliptic problems by substructuring, II. Math. Comput.49, 1-16 · doi:10.1090/S0025-5718-1987-0890250-4
[6]Bramble, J.H., Pasciak, J.E., Schatz, A.H. (1988): The construction of preconditioners for elliptic problems by substructuring, III. Math. Comput.51, 415-430
[7]Bramble, J.H., Pasciak, J.E., Shatz, A.H. (1989): The construction of preconditoners for elliptic problems by substructuring, IV. Math. Comput.53, 1-24
[8]Cai, X.-C. (1989): Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations. Ph.D. thesis, Courant Institute
[9]Cai, X.-C. (1990): An additive Schwarz algorithm for nonselfadjoint elliptic equations. In: T. Chan, R. Glowinski, J. P?riaux, O. Widlund, eds., Third International, Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia
[10]Cai, X.-C., Widlund, O.B. (1990): Multiplicative Schwarz algorithms for nonsymmetric and indefinite elliptic and parabolic problems. Tech. Rep. CCS-90-7, Center for Comput. Sci., Univ. of Kentucky
[11]Dawson, C., Du, Q. Dupont, T.F., (1989): A finite difference domain decomposition algorithm for numerical solution of the heat equation. Tech. Rep., 89-09, Univ. of Chicago
[12]Dryja, M. (1989): An additive Schwarz algorithm for two-and three-dimensional finite element elliptic problems. In: T. Chan, R. Glowinski, G.A. Meurant, J. P?riaux, O. Widlund, eds., Domain Decomposition Methods for Partial Differential Equations II. Philadelphia
[13]Dryja, M., Widlund, O.B. (1987): An additive variant of the Schwarz alternating method for the case of many subregions. Tech. Rep. 339, Dept. of Comp. Sci., Courant Institute
[14]Dryja, M., Widlund, O.B. (1989): Some domain decomposition algorithms for elliptic problems. In: L. Hayes, D. Kincaid, eds., Iterative Methods for Large Linear Systems. Academic Press, San Diego California
[15]Dryja, M., Widlund, O.B. (1990): Towards a unified theory of domain decomposition algorithms for elliptic problems. In: T. Chan, R. Glowinski, J. P?riaux, O. Widlund, eds., Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia
[16]Eisenstat, S.C., Elman, H.C., Schultz, M.H. (1983): Variational iterative methods for nonsymmetric system of linear equations. SIAM J. Numer. Anal.20, 345-357 · Zbl 0524.65019 · doi:10.1137/0720023
[17]Ewing, R.E., Lazarov, R.D., Pasciak, J.E., Vassilevski, P.S. (1989): Finite element methods for parabolic problems with time steps variable in space. Tech. Rep. # 1989-05, Inst. for Sci. Comp., Univ. of Wyoming
[18]Grisvard, P. (1985): Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA
[19]Johnson, C. (1987): Numerical Solution of Partial Differential Equation by the Finite Element Method. Cambridge University Press, Cambridge
[20]Kuznetsov, Yu.A. (1989): Domain decomposition methods for time-dependent problems. Preprint
[21]Lions, P.L. (1988): On the Schwarz alternating method. I. In: R. Glowinski, G. H. Golub, G. A. Meurant, J. P?riaux, eds., Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia
[22]Ne?as, J. (1964): Sur la Coercivit? des Formes Sesquilin?aires, Elliptiques. Rev. Roumaine Math. Pures Appl.9, 47-69
[23]Saad, Y., Schultz, M.H. (1986): GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp.7, 865-869
[24]Yserentant, H. (1986): On the multi-level splitting of finite element spaces. Numer Math.49, 379-412 · Zbl 0608.65065 · doi:10.1007/BF01389538