zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integral representation of Kelvin functions and their derivatives with respect to the order. (English) Zbl 0741.33002
Integral representations of the Kelvin functions ber ν x and bei ν x and their derivatives with respect to the order are considered. Using the Laplace transform technique the derivatives are expressed in terms of finite integrals. The Kelvin functions ber n+1/2 x and bei n+1/2 x can be presented in a closed form.
MSC:
33C10Bessel and Airy functions, cylinder functions, 0 F 1
References:
[1]Lord Kelvin (Sir William Thomson),Ether, electricity and ponderable matter. Mathematical and Physical Papers,3, 484-515 (1890).
[2]O. Heaviside,The induction of currents in cores.The Electrician 12, 583-586 (1884).
[3]C. S. Whitehead,On the generalization of the functions berx, beix, kerx, keix. Quart. J. Pure Appl. Math.42, 316-342 (1911).
[4]E. G. Richardson and E. Tyler,The transverse velocity gradient near the mouths of pipes in which alternating or continuous flow of air is established. Proc. Phys. Soc.42, 1-15 (1929). · doi:10.1088/0959-5309/42/1/302
[5]E. Reissner,Stresses and small displacements of shallow spherical shells. II. J. Mathematics and Physics25, 279-300 (1946), Correction,27, 240 (1948).
[6]J. R. Womersley,Method for calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiology127, 553-563 (1955).
[7]G. N. Watson,A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge University Press, Cambridge 1958.
[8]G. Petiau,La théorie des fonctions de Bessel. Centre National de la Recherche Scientifique, Paris 1955.
[9]Y. Young and A. Kirk,Royal Society Mathematical Tables, vol. 10, Bessel Functions, Part IV, Kelvin Functions. Cambridge University Press, Cambridge 1963.
[10]A. Abramowitz and I. E. Stegun,Handbook of Mathematical Functions. U.S. National Bureau of Standards, Washington, DC 1965.
[11]N. W. McLachlan,Bessel Functions for Engineers, 2nd ed. The Clarendon Press, Oxford 1955.
[12]A. Apelblat and N. Kravitsky,Integral representation of derivatives and integrals with respect to the order of the Bessel functions J v (t), I v (t), the Anger function J v (t) and the integral Bessel function Ji v (t). IMA J. Appl. Math.34, 187-210 (1985). · Zbl 0583.33006 · doi:10.1093/imamat/34.2.187
[13]A. Apelblat,Derivatives and integrals with respect to the order of the Struve functions H v (t) and L v (t). J. Math. Anal. Appl.137, 17-36 (1989). · Zbl 0669.33009 · doi:10.1016/0022-247X(89)90270-9
[14]F. Oberhettinger and L. Badii,Tables of Laplace Transforms. Springer-Verlag, Berlin 1973.