zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stable steady state of some population models. (English) Zbl 0744.34071
Applying an analytical method and limiting equations arguments, some sufficient conditions are provided for the existence of a unique positive equilibrium K for the equation (1) x ˙(t)=-γx(t)+D(x t ) which is the general form of many population models. The authors also investigate when an equilibrium for the functional differential equation (1) is uniformly stable, asymptotically stable, or uniformly asymptotically stable. Applications of the results to some population models are also presented.
Reviewer: S.Anita (Iaşi)

MSC:
34K20Stability theory of functional-differential equations
34K25Asymptotic theory of functional-differential equations
92D25Population dynamics (general)
References:
[1]Arino, O., and Kimmel, M. (1986). Stability analysis of models of cell production systems.Math. Model. 7, 1269-1300. · Zbl 0609.92018 · doi:10.1016/0270-0255(86)90081-3
[2]Glass, L., Beuter, A., and Larocque, D. (1988). Time delays, oscillations, and chaos in physiological control systems.Math. Biosci. 90, 111-125. · Zbl 0649.92008 · doi:10.1016/0025-5564(88)90060-0
[3]Gopalsamy, K., Kulenovi?, M. R. S., and Ladas, G. (1990). Oscillations and global attractivity in models of haematopoiesis.J. Dynam. Diff. Eq. 2, 117-132. · Zbl 0694.34057 · doi:10.1007/BF01057415
[4]Gurney, W. S. C., Blythe, S. P., and Nisbet, R. M. (1980). Nicholson’s blowflies revisited.Nature 287, 17-21. · doi:10.1038/287017a0
[5]Karakostas, G. (1982). Causal operators and topological dynamics.Ann. Mat. Pura Appl. 131, 1-27. · Zbl 0501.45005 · doi:10.1007/BF01765144
[6]Kulenovi?, M. R. S., and Ladas, G. (1987). Linearized oscillations in the population dynamics.Bull. Math. Biol. 49, 615-627.
[7]Kulenovi?, M. R. S., Ladas, G., and Sficas, Y. G. (1989). Global attractivity in population dynamics.Comput. Math. Appl. 18, 825-925.
[8]Kulenovi?, M. R. S., Ladas, G., and Sficas, Y. G. (1991). Global attractivity in Nicholson’s blowflies.Applicable Anal. (in press).
[9]Mackey, M. C., and Glass, L. (1977). Oscillation and chaos in physiological control systems.Science 197, 287-289. · doi:10.1126/science.267326
[10]Mallet-Paret, J., and Nussbaum, R. D. (1986). Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation.Ann. Mat. Pura Appl. 145, 33-128. · Zbl 0617.34071 · doi:10.1007/BF01790539
[11]Sell, G. R. (1971).Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London.
[12]Sibirsky, K. R. (1975).Introduction to Topological Dynamics, Noordhoff International, Leyden.
[13]Wazewska-Czyzewska, M., and Lasota, A. (1976). Mathematical problems of the red-blood cell system (in Polish),Ann. Polish Math. Soc. Ser. III Appl. Math. 6, 23-40.