zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A nonlinear adaptive controller: A comparison between fuzzy logic control and neurocontrol. (English) Zbl 0745.93041
Summary: This paper explores, from a surface-fitting viewpoint, two algorithms which are often applied in the field of intelligent control: fuzzy self- organizing controllers and neural networks. Both methodologies adapt internal model parameters in response to the plant’s input-output mapping. However, while the convergence of single-layer neural networks has been studied in great detail, very few theorems have been proved about self-organizing fuzzy logic controllers. In this paper, it is shown that B-splines can provide a framework for choosing the shape of the fuzzy sets. Then the operators chosen to implement the underlying fuzzy logic are examined, showing how they can produce ‘smooth’ control surfaces. It is now possible to make a direct comparison between fuzzy logic controllers and feedforward neural networks, demonstrating that, in a forward-chaining mode, storing the plant’s behaviour in terms of weights or rule confidences is equivalent. Finally, three training rules for the self-organizing fuzzy controller are derived.
93C40Adaptive control systems
93C42Fuzzy control systems
93C10Nonlinear control systems