zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Flow of viscoelastic fluids between rotating disks. (English) Zbl 0747.76018
Summary: Few boundary-value problems in fluid mechanics can match the attention that has been accorded to the flow of fluids, Newtonian and non- Newtonian, between parallel rotating disks rotating about a common axis or about distinct axes. An interesting feature which has been recently observed is the existence of solutions that are not axially symmetric even in the case of flow due to the rotation of disks about a common axis. In this article we review the recent efforts that have been expended in the study of both symmetric and asymmetric solutions in the case of both the classical linearly viscous fluid and viscoelastic fluids.
MSC:
76A10Viscoelastic fluids
76U05Rotating fluids
76-02Research monographs (fluid mechanics)
References:
[1]T.N.G. Abbot and K. Walters, Rheometrical flow systems, Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations, J. Fluid Mech., 40, 205 (1970). · Zbl 0184.52102 · doi:10.1017/S0022112070000125
[2]M.L. Adams and A.Z. Szeri, Incompressible flow between finite disks, Trans. ASME J. Appl. Mech., 49, 1 (1982). · Zbl 0543.76043 · doi:10.1115/1.3161968
[3]R.C. Arora and V.K. Stokes, On the heat transfer between two rotating disks, Internat. J. Heat Mass Transfer, 25, 2119 (1972). · Zbl 0249.76053 · doi:10.1016/0017-9310(72)90036-1
[4]R.J. Atkin and R.E. Craine, Continuum theories of mixtures: applications, J. Internat. Math. Appl., 17, 153 (1976). · Zbl 0355.76004 · doi:10.1093/imamat/17.2.153
[5]M. Balaram and B.R. Luthra, A numerical study of rotationally symmetric flow of second order fluid, J. Appl. Mech., 40, 685 (1973). · doi:10.1115/1.3423073
[6]M. Balaram and K.S. Sastri, Rotational symmetric flow of non-Newtonian liquid in presence of infinite rotating disc, Arch. Mech. Stos., 17, 359 (1965).
[7]B. Banerjee and A.K. Borkakati, Heat transfer in a hydrodynamic flow between eccentric disks rotating at different speeds, Z. Angew. Math. Phys., 33, 414 (1982). · Zbl 0497.76076 · doi:10.1007/BF00944450
[8]G.K. Batchelor, Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow, Quart. J. Mech. Appl. Math., 4, 29 (1951). · Zbl 0042.43101 · doi:10.1093/qjmam/4.1.29
[9]E.R. Benton, On the flow due to a rotating disk, J. Fluid Mech., 24, 781 (1966). · Zbl 0141.43702 · doi:10.1017/S0022112066001009
[10]R. Berker, Sur quelques cas d’integration des equations due mouvement d’un fluide incompressible, Lille, Paris (1936).
[11]R. Berker, Integration des equations du mouvement d’um fluide visquex, incompressible, Handbuch der Physik, Vol. VIII/2, Springer-Verlag, Berlin (1963).
[12]R. Berker, A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel planes rotating about the same axis, Arch. Mech. Stos., 31, 265 (1979).
[13]R. Berker, An exact solution of the Navier-Stokes equation, the vortex with curvilinear axis, Internat. J. Engrg. Sci., 20, 217 (1982). · Zbl 0487.76039 · doi:10.1016/0020-7225(82)90017-9
[14]B. Bernstein, E.A. Kearsley and L.J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol., 7, 391 (1963). · doi:10.1122/1.548963
[15]P.L. Bhatnagar, On two-dimensional boundary layer in non-Newtonian fluids in constant coefficients of viscosity and cross-viscosity, Indian J. Math., 3, 95 (1961).
[16]R.K. Bhatnagar, Secondary flow of an elastico-viscous fluid between two coaxial cones having the same vortex and rotating about a common axis, Proc. Nat. Acad. Sci. India, P.L. Bhatnagar Commemoration Volume, 39, 107 (1969).
[17]R.K. Bhatnagar, Proc. Indian Acad. Sci., 58, 279 (1973).
[18]R.K. Bhatnagar, Flow between coaxial rotating disks: with and without externally applied magnetic field, Internat. J. Math. Sci., 4, 181 (1981). · Zbl 0463.76004 · doi:10.1155/S0161171281000136
[19]R.K. Bhatnagar, Numerical solutions for flow of an Oldroyd fluid confined between coaxial rotating disks, J. Rheol., 26, 19 (1983). · Zbl 0481.76002 · doi:10.1122/1.549658
[20]R.K. Bhatnagar and M.G.N. Perera Numerical solutions for flow of an Oldroyd fluid confined between coaxial rotating disks, J. Rheol., 26, 19 (1982). · Zbl 0481.76002 · doi:10.1122/1.549658
[21]R.K. Bhatnagar and J.V. Zago, Numerical investigations of flow of a viscoelastic fluid between rotating coaxial disks, Rheol. Acta, 17, 557 (1978). · Zbl 0397.76027 · doi:10.1007/BF01522028
[22]J.L. Bleustein and A.E. Green, Dipolar fluids, Internat. J. Engrg. Sci., 5, 323 (1967). · Zbl 0145.46305 · doi:10.1016/0020-7225(67)90041-9
[23]L.L. Blyler and S.J. Kurtz, Analysis of the Maxwell orthogonal rheometer, J. Appl. Polym. Sci., 11, 127 (1967). · doi:10.1002/app.1967.070110110
[24]R.M. Bowen, Theory of Mixtures in Continuum Physics, Vol. III (ed. A.C. Eringen), p. 1 (1976).
[25]M.V. Bower, K.R. Rajagopal, and A.S. Wineman, Flow of K-BKZ fluids between parallel plates rotating about distinct axes: shear thinning and inertial effects, J. Non-Newtonian Fluid Mech., 22, 289 (1987). · Zbl 0616.76015 · doi:10.1016/0377-0257(87)85021-8
[26]D.R. Caldwell and C.W. van Atta, Characteristics of Ekman boundary layer instabilities, J. Fluid Mech., 44, 79 (1970). · doi:10.1017/S0022112070001702
[27]J.H. Cerutti, Collocation methods for systems of ordinary differential equations and parabolic partial differential equations, Ph.D. thesis, University of Wisconsin (1975).
[28]B.D. Coleman, Substantially stagnant motions, Trans. Soc. Rheol., 6, 293 (1962). · doi:10.1122/1.548928
[29]B.D. Coleman, A representation theorem for one constitutive equation of a simple material in motions with constant stretch history, Arch. Rational Mech. Anal., 20, 329 (1965). · Zbl 0145.22104 · doi:10.1007/BF00250189
[30]R.E. Craine, Oscillations of a plate in a binary mixture of incomparable Newtonian fluids, Internat. J. Engrg. Sci., 9, 1177 (1971). · Zbl 0225.76025 · doi:10.1016/0020-7225(71)90083-8
[31]I. Crewther, R.R. Huilgol, and R. Josza, Axisymmetric and non-axisymmetric flows of a non-Newtonian fluid between co-axial rotating disks, Pre-print (personal communication).
[32]P.K. Currie, Constitutive equations for polymer melts predicted by Doi-Edwards and Curtiss-Bird kinetic theory models, J. Non-Newtonian Fluid Mech., 11, 53 (1982). · Zbl 0492.76003 · doi:10.1016/0377-0257(82)85015-5
[33]R.X. Dai, K.R. Rajagopal, and A.Z. Szeri, A numerical study of the flow of a K-BKZ fluid between plates rotating about non-coincident axes, J. Non-Newtonian Fluid Mech., 38, 289 (1991). · Zbl 0714.76010 · doi:10.1016/0377-0257(91)83009-S
[34]C. Devanathan, Flow of finitely conducting fluid between torsionally oscillating parallel infinite plane disks in the presence of uniform magnetic field perpendicular to the disks, Proc. Nat. Inst. Sci. India, 28, 747 (1962).
[35]D. Dijkstra and G.J.F. van Heijst, The flow between finite rotating disks enclosed by a cylinder, J. Fluid Mech., 128, 123 (1983). · Zbl 0518.76024 · doi:10.1017/S0022112083000415
[36]N. Dohara, The flow and heat transfer between a torsionally oscillating and a stationary disk, J. Engrg. Math., 15, 1 (1981). · Zbl 0444.73099 · doi:10.1007/BF00039840
[37]N. Dohara, Bull. Iron Steel Tech. College, 15, 11 (1981).
[38]R. Drouot, Sur un cas d’integration des equations du mouvement d’un fluide incompresseible du deuxieme ordre, C. R. Acad. Sci. Paris, 265A, 300 (1967).
[39]J.E. Dunn and R.L. Fosdick, Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade, Arch. Rational Mech. Anal., 56, 191 (1974). · Zbl 0324.76001 · doi:10.1007/BF00280970
[40]J.E. Dunn and K.R. Rajagopal, A critical review and thermodynamic analysis of fluids of the differential type (to appear).
[41]A.R. Elcrat, On the swirling flow between rotating coaxial disks, J. Differential Equations, 18, 423 (1975). · Zbl 0302.76059 · doi:10.1016/0022-0396(75)90072-8
[42]A.R. Elcrat, On one flow between a rotating disk and a porous disk, Arch. Rational Mech. Anal., 73, 63 (1980). · Zbl 0422.76018 · doi:10.1007/BF00283256
[43]M.E. Erdogan, Non-Newtonian flow due to non-coaxially rotations of a disk and a fluid at infinity, Z. Angew. Math. Mech., 56, 141 (1967). · Zbl 0325.76009 · doi:10.1002/zamm.19760560403
[44]A.C. Eringen, Simple microfluids, Internat. J. Engrg. Sci, 2, 205 (1964). · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[45]A.C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16, 1 (1966).
[46]A.J. Faller, An experimental study of the instability of the laminar Ekman boundary layer, J. Fluid Mech., 15, 560 (1963). · Zbl 0112.19303 · doi:10.1017/S0022112063000458
[47]A.J. Faller and R.E. Kaylor, Dynamics of Fluids and Plasmas (ed. S.I. Pai), Academic Press, New York (1966).
[48]R.L. Fosdick and K.R. Rajagopal, Anomalous features in the model of second order fluids, Arch Rational Mech. Anal., 70, 145 (1978).
[49]R.L. Fosdick and K.R. Rajagopal, Uniqueness and drag for fluids of second grade in steady motion, Internat J. Non-Linear Mech., 13, 131 (1979). · Zbl 0392.76005 · doi:10.1016/0020-7462(78)90001-X
[50]R.L. Fosdick and K.R. Rajagopal, Thermodynamics and stability of fluids of third grade, Proc. Roy. Soc. London Ser. A, 339, 351 (1980).
[51]J.D. Goddard, The dynamics of simple fluids in steady circular shear, Quart. Appl. Math., 31, 107 (1983).
[52]J.D. Goddard, J.B. Melville, and K. Zhang, Similarity solutions for stratified rotating-disk flow, presented at the Annual Meeting of the A.I.Ch.E., Chicago (1985) and the Amer. Phys. Soc. Div. of Fluid Dynamics, Tuscon (1985).
[53]S. Gogus, The steady flow of a binary mixture between two rotating non-coaxial disks, Internat. J. Engrg. Sci., (to appear).
[54]C. Goldstein and W.R. Schowalter, Further studies of fluid non-linearity: the orthogonal rheometer and the oscillating sphere, Trans. Soc. Rheol., 19, 1 (1975). · doi:10.1122/1.549363
[55]P.S. Granville, J. Slip Res., 17, 181 (1973).
[56]D. Greenspan, Numerical studies of flow between rotating coaxial disks, J. Inst. Math. Applic., 9, 370 (1972). · Zbl 0236.76032 · doi:10.1093/imamat/9.3.370
[57]H.P. Greenspan, Theory of Rotating Fluids, Cambridge University Press, Cambridge (1968).
[58]H.P. Greenspan and L.N. Howard, On a time dependent motion of a rotating fluid, J. Fluid Mech., 17, 385 (1963). · Zbl 0124.42901 · doi:10.1017/S0022112063001415
[59]N. Gregory, J.J. Stuart and W.S. Walker, On the stability of three dimensional boundary layers with application to the flow due to a rotating disk, Philos. Trans. Roy. Soc. London Ser. A, 248, 155 (1955). · Zbl 0064.43601 · doi:10.1098/rsta.1955.0013
[60]S.P. Hastings, On existence theorems for some problems from boundary layer theory, Arch. Rational Mech. Anal., 38, 308 (1970). · Zbl 0212.59403 · doi:10.1007/BF00281527
[61]G.H. Hoffman, Extension of perturbation series by computer: viscous flow between two infinite rotating disks, J. Comput. Phys., 16, 240 (1974). · Zbl 0289.76018 · doi:10.1016/0021-9991(74)90093-X
[62]M. Holodniok, M. Kubicek, and V. Halvacek, Computation of flow between two rotating coaxial disks, J. Fluid Mech., 81, 680 (1978).
[63]M. Holodniok, M. Kubicek, and V. Hlavacek, Computation of flow between two rotating coaxial disks, J. Fluid Mech., 108, 227 (1981). · Zbl 0502.76041 · doi:10.1017/S0022112081002097
[64]R.R. Huilgol, On the properties of the motion with constant stretch history occurring in the Maxwell rheometers, Trans. Soc. Rheol., 13, 513 (1969). · doi:10.1122/1.549140
[65]R.R. Huilgol and J.B. Keller, Flow of viscoelastic fluids between rotating disks, Part 1, J. Non-Newtonian Fluid Mech., 18, 107 (1975).
[66]R.R. Huilgol and K.R. Rajagopal, Non-axisymmetric flow of a viscoelastic fluid bertween rotating disks, J. Non-Newtonian Fluid Mech., 23, 423 (1987). · Zbl 0616.76012 · doi:10.1016/0377-0257(87)80030-7
[67]Z.H. Ji, K.R. Rajagopal, and A.Z. Szeri, Multiplicity of solutions in von Karman flows of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 36, 1 (1990). · Zbl 0708.76009 · doi:10.1016/0377-0257(90)85001-F
[68]P.N. Kaloni, Several comments on the paper ?Some remarks on useful theorems for second order fluid,? J. Non-Newtonian Fluid Mech., 36, 70 (1990).
[69]P.N. Kaloni and A.M. Siddiqui, A note on the flow of a viscoelastic fluid between eccentric disks, J. Non-Newtonian Fluids, 26, 125 (1987). · doi:10.1016/0377-0257(87)85050-4
[70]S.R. Kasivishwanathan and M.V. Gandhi, A class of exact solution for the magnetohydrodynamic flow of a micropolar fluid (to appear).
[71]S.R. Kasivishwanathan and A.R. Rao, Exact solutions for one unsteady flow and heat transfer between eccentrically rotating disks, Internat. J. Engrg. Sci., 27, 731 (1989). · Zbl 0681.76110 · doi:10.1016/0020-7225(89)90026-8
[72]A. Kaye, Note No. 134, College of Aeronautics, Cranfield Institute of Technology (1962).
[73]H.B. Keller, Applications of Bifurcation Theory (ed. P. Rabinowitz), Academic Press, New York (1977).
[74]H.B. Keller and R.K.-H. Szeto, Calculations of flow between rotating disks, Computing Methods in Applied Sciences and Engineering (ed. R. Glowinski and J.L. Lions), North-Holland, Amsterdam, p. 51 (1980).
[75]D.G. Knight, Flow between eccentric disks rotating at different speeds: inertia effects, Z. Angew. Math. Phys., 31, 309 (1980). · Zbl 0425.76026 · doi:10.1007/BF01590658
[76]R. Kobayashi, Y. Kohama, and C. Takamadate, Spiral vortices in boundary layer transition regime on rotating disk, Acta Mech., 35, 71 (1980). · Zbl 0425.76029 · doi:10.1007/BF01190058
[77]H.O. Kreiss and S.V. Parter, On the swirling flow between rotating coaxial disks, asymptotic behavior, I & II, Proc. Roy. Soc. Edinburgh Sect. A, 90 (3-4), 293 (1981).
[78]H.O. Kreiss and S.V. Parter, On the swirling flow between rotating coaxial disks: existence and non-uniqueness, Comm. Pure Appl. Math., 36, 35 (1983). · Zbl 0498.34012 · doi:10.1002/cpa.3160360104
[79]C.Y. Lai, K.R. Rajagopal and A.Z. Szeri, Asymmetric flow between parallel rotating disks, J. Fluid Mech., 146, 203 (1984). · Zbl 0565.76037 · doi:10.1017/S0022112084001828
[80]C.Y. Lai, K.R. Rajagopal, and A.Z. Szeri, Asymmetric flow above a rotating disk, J. Fluid Mech., 157, 471 (1985). · Zbl 0574.76032 · doi:10.1017/S0022112085002452
[81]G.N. Lance and M.H. Rogers, The axially symmetric flow of a viscous fluid between two infinite rotating disks, Proc. Roy. Soc. London Ser. A, 266, 109 (1961).
[82]G. MacSithigh, R.L. Fosdick, and K.R. Rajagopal, A plane non-linear shear for an elastic layer with a non-convex stored energy function, Internat. J. Solids and Structures, 22, 1129 (1986). · Zbl 0601.73086 · doi:10.1016/0020-7683(86)90022-3
[83]B.J. Matkowsky and W.L. Siegmann, The flow between counter-rotating disks at high Reynolds number, SIAM J. Appl. Math., 30, 720 (1976). · Zbl 0331.76023 · doi:10.1137/0130064
[84]B. Maxwell and R.P. Chartoff, Studies of a polymer melt in an orthogonal rheometer, Trans. Soc. Rheol., 9, 51 (1965). · doi:10.1122/1.548979
[85]J.B. McLeod and S.V. Parter, On the flow between two counter-rotating infinite plane disks, Arch. Rational. Mech. Anal., 54, 301 (1974). · Zbl 0287.76067 · doi:10.1007/BF00249193
[86]G.L. Mellor, P.J. Chapple, and V.K. Stokes, On the flow between a rotating and a stationary disk, J. Fluid Mech., 31, 95 (1968). · Zbl 0157.57302 · doi:10.1017/S0022112068000054
[87]S.N. Murthy and R.K.P. Ram, MHD and head transfer due to eccentric rotations of a porous disk and a fluid at infinity, Internat. J. Engrg. Sci., 16, 943 (1978). · doi:10.1016/0020-7225(78)90053-8
[88]N.D. Nguyen, J.P. Ribault, P. Florent, Multiple solutions for the flow between coaxial disks, J. Fluid Mech., 68, 369 (1975). · Zbl 0329.76030 · doi:10.1017/S0022112075000869
[89]W. Noll, Motions with constant stretch history, Arch. Rational Mech. Anal., 11, 97 (1962). · Zbl 0112.18301 · doi:10.1007/BF00253931
[90]J.G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. London Ser. A, 200, 523 (1950). · Zbl 1157.76305 · doi:10.1098/rspa.1950.0035
[91]M.R. Osborne, On shooting methods for boundary value problems, J. Math. Anal. Appl., 27, 417 (1969). · Zbl 0177.20402 · doi:10.1016/0022-247X(69)90059-6
[92]S.V. Parter, On the swirling flow between rotating coaxial disks: a survey, Theory and Applications of Singular Perturbations, Proc. of a Conf., Oberwolfach, 1981 (ed. W. Eckhaus and E.M. Dejager). Lecture Notes in Mathematics, Vol. 942, Springer-Verlag, Berlin, pp. 258-280 (1982).
[93]S.V. Parter and K.R. Rajagopal, Swirling flow between rotating plates, Arch. Rational Mech. Anal., 86, 305 (1984). · Zbl 0594.76022 · doi:10.1007/BF00280030
[94]C.E. Pearson, Numerical solutions for time-dependent viscous flow between two rotating coaxial disks, J. Fluid Mech., 21, 623 (1965). · Zbl 0131.41504 · doi:10.1017/S002211206500037X
[95]H.J. Pesch and P. Rentrop, Numerical solutions of the flow between two-counter rotating coaxial disks, J. Fluid Mech., 21, 623 (1965). · Zbl 0131.41504 · doi:10.1017/S002211206500037X
[96]P.J. Peucheux and C. Boutin, Study of a laminar flow of two non-mixable liquids between two coaxial disks rotating in opposite senses, Z. Angew. Math. Phys., 36, 238 (1985). · Zbl 0571.76023 · doi:10.1007/BF00945459
[97]N. Phan-Thien, Coaxial disk flow and flow about a rotating disk of a Maxwellian fluid, J. Fluid Mech., 128, 427 (1983). · Zbl 0516.76010 · doi:10.1017/S0022112083000543
[98]N. Phan-Thien, Coaxial disk flow of an Oldroyd B-fluid: exact solution and stability, J. Non-Newtonian Fluid Mech, 13, 325 (1983). · Zbl 0567.76013 · doi:10.1016/0377-0257(83)80027-5
[99]K.G. Picha and E.R.C. Eckert, Study of the air flow between coaxial disks rotating with arbitrary velocities in an open or enclosed space, Proc. U.S. 3rd National Congress on Applied Mechanics, p. 791 (1958).
[100]K.R. Rajagopal, The flow of a second order fluid between rotating parallel plates. J. Non-Newtonian Fluid Mech., 9, 185 (1981). · Zbl 0476.76008 · doi:10.1016/0377-0257(87)87015-5
[101]K.R. Rajagopal, On the flow of a simple fluid in an orthogonal rheometer, Arch. Rational Mech. Anal., 79, 29 (1982). · Zbl 0513.76002 · doi:10.1007/BF02416565
[102]K.R. Rajagopal, On the creeping flow of the second order fluid, J. Non-Newtonian Fluid Mech., 15, 239 (1984). · Zbl 0568.76015 · doi:10.1016/0377-0257(84)80008-7
[103]K.R. Rajagopal, A class of exact solutions to the Navier-Stokes equations, Internat. J. Engrg. Sci., 22, 451 (1984). · Zbl 0531.76033 · doi:10.1016/0020-7225(84)90079-X
[104]K.R. Rajagopal and A.S. Gupta, Flow and stability of second grade fluids between two parallel rotating plates, Arch. Mech. Stos., 33, 663 (1981).
[105]K.R. Rajagopal and A.S. Gupta, Flow and stability of a second grade fluid between two parallel rotating plates about non-coincident axes, Internat. J. Engrg. Sci., 19, 1401 (1985). · Zbl 0469.76003 · doi:10.1016/0020-7225(81)90037-9
[106]K.R. Rajagopal and P.N. Kaloni, Continuum Mechanics and Its Applications, Hemisphere Press, Washington, DC (1989).
[107]K.R. Rajagopal, P.N. Kaloni, and L. Tao, Longitudinal and torsional oscillations of a solid cylinder in a simple fluid, J. Math. Phys. Sci, 23, 445 (1989).
[108]K.R. Rajagopal, M. Renardy, Y. Renardy, and A.S. Wineman, Flow of viscoelastic fluids between plates rotating about distinct axes, Rheol. Acta, 25, 459 (1986). · Zbl 0608.76007 · doi:10.1007/BF01774396
[109]K.R. Rajagopal and A.S. Wineman, A class of exact solutions for the flow of a viscoelastic fluid, Arch. Mech. Stos., 35, 747 (1983).
[110]K.R. Rajagopal and A.S. Wineman, Flow of a BKZ fluid in an orthogonal rheometer, J. Rheol., 27, 509 (1983). · Zbl 0535.76004 · doi:10.1122/1.549729
[111]K.R. Rajagopal and A.S. Wineman, New exact solutions in non-linear elasticity, Internat. J. Engrg. Sci., 23, 217 (1985). · Zbl 0557.73008 · doi:10.1016/0020-7225(85)90076-X
[112]K.R. Rajagopal and A.S. Wineman, On a class of deformation of a material with non-convex stored energy function, J. Structural Mech., 12, 471 (1984-85).
[113]A.R. Rao and S.R. Kasivishwanathan, On exact solution of the unsteady Navier-Stokes equation?the vortex with instantaneous curvilinear axis, Internat. J. Engrg. Sci, 25, 337 (1987). · Zbl 0609.76021 · doi:10.1016/0020-7225(87)90040-1
[114]A.R. Rao and S.R. Kasivishwanathan, A class of exact solutions for the flow of a micropolar fluid, Internat. J. Engrg. Sci., 25, 443 (1987). · Zbl 0609.76006 · doi:10.1016/0020-7225(87)90070-X
[115]P.R. Rao and A.R. Rao, Heat transfer in a MHD flow between eccentric disks rotating at different speeds, Z. Angew. Math. Phys., 34, 549 (1983).
[116]H. Rasmussen, High Reynolds number flow between two infinite rotating disks, J. Anst. Math. Soc., 12, 483 (1971). · Zbl 0228.76119 · doi:10.1017/S1446788700010387
[117]M. Reiner, A mathematical theory of dilatancy, Amer. J. Math., 67, 350 (1945). · Zbl 0063.06464 · doi:10.2307/2371950
[118]E. Reshotko and R.L. Rosenthal, Laminar flow between two infinite disks, one rotating and one stationary, Israel J. Tech., 9, 93 (1971).
[119]W. Rheinboldt, Solutions fields of non-linear equations and continuation methods, SIAM J. Numer. Anal., 17, 221 (1982). · Zbl 0431.65035 · doi:10.1137/0717020
[120]W. Rheinboldt and J.V. Burkhardt, A locally parameterized continuation process, ACM Trans. Math. Softward, 9, 215 (1983). · Zbl 0516.65029 · doi:10.1145/357456.357460
[121]R.S. Rivlin and J.L. Ericksen, Stress deformation relations for isotropic materials, J. Rational Mech. Anal., 4, 323 (1955).
[122]S.M. Roberts and J.S. Shipman, Computation of the flow between a rotating and stationary disk, J. Fluid Mech., 73, 53 (1976). · Zbl 0346.76019 · doi:10.1017/S0022112076001249
[123]H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1979)
[124]D. Schultz and D. Greenspan, Simplification and improvement of a numerical method for Navier-Stokes problems, Proc. Colloquium on Differential Equations, Kesthaly, Hungary, p. 201 (1974).
[125]V.P. Sharma, Flow and heat transfer due to small torsional oscillations of a disk about a constant mean, Acta Mech., 32, 19 (1979). · Zbl 0396.73043 · doi:10.1007/BF01176131
[126]A. Sirivat, An experimental study of stability and transition of flow between rotating disks, Fluid Dynamics Res., (to appear).
[127]A. Sirivat, Stability of flow between stationary and rotating disks, Phys. Fluids, (to appear).
[128]A. Sirivat, K.R. Rajagopal, and A.Z. Szeri, An experimental investigation of one flow of non-Newtonian fluids between rotating disks, J. Fluid Mech., 186, 243 (1988). · doi:10.1017/S0022112088000126
[129]A.C. Srivatsava, The effect of magnetic field on the flow between two non-parallel planes, Quart. J. Math. Appl. Mech., 14, 353 (1961). · Zbl 0101.42502 · doi:10.1093/qjmam/14.3.353
[130]K. Stewartson, On the flow between two rotating coaxial disks, Proc. Cambridge Philos. Soc., 49, 333 (1953). · doi:10.1017/S0305004100028437
[131]J.T. Stuart, On the effects of uniform suction on the steady flow due to a rotating disk, Quart. J. Mech. Appl. Math. 7, 446 (1954). · Zbl 0057.18006 · doi:10.1093/qjmam/7.4.446
[132]A.Z. Szeri, A. Giron, S.J. Schneider, and H.N. Kaufmann, Flow between rotating disks, Part I. Basic flow, J. Fluid Mech., 134, 133 (1983). · doi:10.1017/S0022112083003262
[133]A.Z. Szeri, C. Lai, and A. Kayhan, Rotating disk with uniform suction in streaming flow, Internat. J. Numer. Methods Fluids, 6, 175 (1986). · Zbl 0591.76178 · doi:10.1002/fld.1650060402
[134]A.Z. Szeri, S.J. Schneider, F. Labbe, and H.N. Kaufmann, Flow between rotating disks, Part I. Basic flow, J. Fluid Mech., 134, 103 (1983). · doi:10.1017/S0022112083003250
[135]K.K. Tam, A note on the asymptotic solution of the flow between two oppositely rotating infinite plane disks, SIAM J. Appl. Math., 17, 1305 (1969). · Zbl 0187.50804 · doi:10.1137/0117122
[136]P.R. Tatro and E.L. Mollo-Christensen, Experiments on Ekman layer instability, J. Fluid Mech., 28, 531 (1967). · doi:10.1017/S0022112067002289
[137]C. Thornley, On Stokes and Rayleigh layers in rotating system, Quart. J. Mech. Appl. Math., 21, 451 (1968). · Zbl 0164.28301 · doi:10.1093/qjmam/21.4.451
[138]C. Truesdell, A First Course in Rational Continuum Nechanics, Academic Press, New York (1977).
[139]C. Truesdell, Rational Thermodynamics, Springer-Verlag, New York, (1984).
[140]C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik, Vol. III/3 (ed. Flugge), Springer-Verlag, Berlin (1975).
[141]T. von Karman, Uber laminare und turbulente Reibung, Z. Angew. Math. Mech., 1, 232 (1921). · doi:10.1002/zamm.19210010317
[142]M.H. Wagner, Analysis of time dependent non-linear stress growth data for shear and elongational flow of a low density branched polyethylene line melt, Rheol. Acta, 15, 133 (1976). · doi:10.1007/BF01517504
[143]W.P. Walsh, On the flow of a non-Newtonian fluid between rotating, coaxial disks, Z. Angew. Math. Phys., 38, 495 (1987). · Zbl 0619.76001 · doi:10.1007/BF00946333
[144]C.C. Wang, A representation theorem for the constitutive equation of a simple material in motions with constant stretch history, Arch. Rational Mech. Anal., 20, 329 (1965).
[145]A.M. Watts, On the von Karman equations for axi-symmetric flow, Appl. Math. Preprint No. 74, University of Queensland (1974).
[146]P.D. Weidman, On the spin-up and spin-down of a rotating fluid, Part 2. Measurements and instability, J. Fluid Mech., 77, 709 (1976). · doi:10.1017/S0022112076002851
[147]K.H. Well, Note on a problem by Lanee and a problem by Bellman, J. Math. Anal. Appl., 40, 258 (1972). · Zbl 0279.65069 · doi:10.1016/0022-247X(72)90048-0
[148]L.O. Wilson and N.L. Schryer, Flow between a stationary and rotating disk with suction, J. Fluid Mech., 85, 479 (1978). · Zbl 0383.76020 · doi:10.1017/S0022112078000750
[149]P.J. Zandbergen and D. Dijkstra, Von Karman swirling flows, Annual Rev. Fluid Mech., 19, 465 (1987). · doi:10.1146/annurev.fl.19.010187.002341
[150]Zhang and J.D. Goddard, Inertial and elastic effects in circular shear (ERD) flow of a visoelastic fluids, J. Non-Newtonian Fluid Mech., 33, 233 (1989). · doi:10.1016/0377-0257(89)80001-1