zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
q-extensions of Barnes’, Cauchy’s, and Euler’s beta integrals. (English) Zbl 0748.33012
Topics in mathematical analysis, Vol. Dedicated Mem. of A. L. Cauchy, Ser. Pure Math. 11, 294-314 (1989).

[For the entire collection see Zbl 0721.00014.]

Various q-extensions of the beta-integral and the integrals of Barnes and Cauchy have been deduced in recent years. See, for example, R. Askey and R. Roy [Rocky Mt. J. Math. 16, 365-372 (1986; Zbl 0599.33002)].

Cauchy’s residue theorem and certain summation formulas for q- hypergeometric series are used in this study to provide further extensions of the same integrals. Furthermore, various q-contour integrals are evaluated and a transformation formula of general character involving q-hypergeometric series of one variable is obtained.


MSC: