[1] | Abraham, R., & Shaw, C. [1982], Dynamics: The Geometry of Behavior. Part Three: Global Behavior, Aerial Press, Santa Cruz, California. |

[2] | Bensimon, D., & Kadanoff, L. P. [1984], Extended chaos and disappearance of KAM trajectories, Physica 13 D, 82. |

[3] | Channell, P. J., & Scovel, J. C. [1988], Symplectic integration of Hamiltonian systems, preprint. |

[4] | Chirikov, B. V. [1979], A universal instability of many-dimensional oscillator systems, Physics Reports 52, 263. · doi:10.1016/0370-1573(79)90023-1 |

[5] | Easton, R. W. [1985], Trellises formed by stable and unstable manifolds in the plane, Transaction of the A.M.S. 294, 719-732. · doi:10.1090/S0002-9947-1986-0825732-X |

[6] | Escande, D. F. [1987], Hamiltonian chaos and adiabaticity, Proceed. Int. Workshop, Kiev. |

[7] | Franjione, J. G., & Ottino, J. M. [1987], Feasibility of numerical tracking of material lines and surfaces in chaotic flows, Phys. Fluids 30, 3641. · doi:10.1063/1.866449 |

[8] | Guckenheimer, J., & Holmes, P. [1983], Non-Linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York. |

[9] | Kaper, T. [1988], Private Communication. |

[10] | Karney, F. F. [1983], Long time correlations in the stochastic regime, Physica 8 D, 360. |

[11] | Lichtenberg, A. J., & Lieberman, M. A. [1983], Regular and Stochastic Motion, Springer-Verlag, New York. |

[12] | Ling, F. H. [1986], A numerical study of the applicability of Melnikov’s method, Phys. Letters A 119, 447-452. · doi:10.1016/0375-9601(87)90413-0 |

[13] | Mackay, R. S., Meiss, J. D., & Percival, I. C. [1984], Transport in Hamiltonian systems, Physica 13 D, 55. |

[14] | Mackay, R. S., & Meiss, J. D. [1986], Flux and differences in action for continuous time Hamiltonian systems, J. Phys. A.: Math. Gen. 19, 225. · Zbl 0607.70019 · doi:10.1088/0305-4470/19/5/002 |

[15] | Mackay, R. S., Meiss, J. D., & Percival, I. C. [1987], Resonances in area preserving maps, Physica 27 D, 1. |

[16] | Meiss, J. D., & Ott, E. [1986], Markov tree model of transport in area preserving maps, Physica 20 D, 387. |

[17] | Poincaré, H. [1892], Les Méthodes Nouvelles de la Mécanique Celeste, Gauthier-Villars, Paris. |

[18] | Rom-Kedar, V., Leonard, A., & Wiggins, S. [1988], An analytical study of transport, chaos and mixing in an unsteady vortical Flow, to appear in J. Fluid Mech. |

[19] | Stuart, J. T. [1971], Stability problems in fluids, AMS Lectures in Applied Math. 13, 139-155. |

[20] | Wiggins, S. [1988], Global Bifurcations and Chaos ? Analytical Methods, Springer-Verlag, New York. |