zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity. (English) Zbl 0757.76001
This work involves the study of a newly proposed constitutive model, associated with the flow of ice, which seems to be a composite of the second-order and power-law models. The author claims that since this “modified second-order” model deserves further study one should first investigate fundamental problems. With this in mind, the author proceeds to demonstrate that the initial-boundary-value problem which pertains to the isothermal unsteady channel flow of a modified second-order fluid that adheres to the boundary, is well posed. Furthermore, when the driving force is steady, the velocity field approaches that of Glen’s flow law suggesting that the modified model may be an improvement on previous models. This work merits attention if only for the discussions it would provoke.
MSC:
76A05Non-Newtonian fluids
86A40Glaciology
References:
[1]Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
[2]Budd, W. F., & T. H. Jacka, A review of ice rheology for ice sheet modelling, Cold Regions Science and Technology 16 (1989), 107-144. · doi:10.1016/0165-232X(89)90014-1
[3]Cioranescu, D., & O. El Hacène, Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations and Their Applications: Collège de France Seminar, Vol. VI, H. Brezis & J. L. Lions (eds.), Pitman, Boston, etc., 1984, pp. 178-197.
[4]Coleman, B. D., R. J. Duffin & V. Mizel, Instability, uniqueness, and non-existence theorems for the equation U t=u xx ? u xx on a strip, Arch. Rational Mech. Anal. 19 (1965), 100-116. · Zbl 0292.35016 · doi:10.1007/BF00282277
[5]Coleman, B. D., & V. Mizel, Breakdown of laminar shearing flows for second-order fluids in channels of critical width, Z. Angew. Math. Mech. 46 (1966), 445-448. · doi:10.1002/zamm.19660460706
[6]DiBenedetto, E., & A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 349 (1984), 83-128.
[7]DiBenedetto, E., & A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1-22. · Zbl 0549.35061 · doi:10.1515/crll.1985.357.1
[8]Dunn, J. E., On the free energy and stability of nonlinear fluids, J. Rheology 26 (1982), 43-68. · Zbl 0502.76066 · doi:10.1122/1.549659
[9]Dunn, J. E., & R. L. Fosdick, Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Rational Mech. Anal. 56 (1974), 191-252. · Zbl 0324.76001 · doi:10.1007/BF00280970
[10]Dunwoody, J., On the stability of the rest state of fluids of complexity n, in Trends in Applications of Pure Mathematics to Mechanics, Vol. IV, J. Brilla (ed.), Pitman, Boston, etc., 1983, pp. 59-73.
[11]Fosdick, R. L., & K. R. Rajagopal, Anomalous features in the model of ?second order fluids?, Arch. Rational Mech. Anal. 79 (1979), 145-152.
[12]Galdi, G. P., M. Padula & K. R. Rajagopal, On the conditional stability of the rest state of a fluid of second grade in unbounded domains, Arch. Rational Mech. Anal. 109 (1990), 173-182. · Zbl 0697.76018 · doi:10.1007/BF00405241
[13]Glen, J. W., Experiments on the deformation of ice, J. Glaciology 2 (1952), 111-114.
[14]Glen, J. W., The creep of polycrystalline ice, Proc. Roy. Soc. London A 228 (1955), 519-538. · doi:10.1098/rspa.1955.0066
[15]Hooke, R. Leb., Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements, Rev. Geophys. Space Phys. 19 (1981), 664-672. · doi:10.1029/RG019i004p00664
[16]Kjartanson, B. H., Pressuremeter creep testing in laboratory ice, Ph. D. thesis, 400 pp., University of Manitoba, Winnipeg, Canada, 1986.
[17]Kjartanson, B. H., D. H. Shields, L. Domaschuk & C.-S. Man, The creep of ice measured with the pressuremeter, Can. Geotech. J. 25 (1988), 250-261. · doi:10.1139/t88-029
[18]Lady?enskaja, O. A., V. A. Solonnikov & N. N. Ural’Ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, 1968.
[19]Ladyzhenskaya, O. A., The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, etc., 1985.
[20]Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[21]McTigue, D. F., S. L. Passman & S. J. Jones, Normal stress effects in the creep of ice, J. Glaciology 31 (1985), 120-126.
[22]Man, C.-S., D. H. Shields, B. Kjartanson & Q.-X. Sun, Creep of ice as a fluid of complexity 2: the pressuremeter problem, in Proceedings of the Tenth Canadian Congress of Applied Mechanics, London, Ontario, June 2-7, 1985, Vol. 1, H. Rasmussen (ed.), pp. A347?A348.
[23]Man, C.-S., & Q.-X. Sun, On the significance of normal stress effects in the flow of glaciers, J. Glaciology 33 (1987), 268-273.
[24]Nye, J. F., The flow law of ice from measurements in glacier tunnels, laboratory measurements and the Jungfraufirn borehole experiment, Proc. Roy. Soc. London A 219 (1953), 477-489. · doi:10.1098/rspa.1953.0161
[25]Nye, J. F., The distribution of stress and velocity in glaciers and ice-sheets, Proc. Roy. Soc. London A 239 (1957), 113-133. · Zbl 0077.38201 · doi:10.1098/rspa.1957.0026
[26]Paterson, W. S. B., The Physics of Glaciers, second edition, Pergamon Press, Oxford, etc., 1981.
[27]Sun, Q.-X., On two special Rivlin-Ericksen fluid models generalizing Glen’s flow law for polycrystalline ice, Ph. D. thesis, 172 pp., University of Manitoba, Winnipeg, Canada, 1987.
[28]Ting, T. W., Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal. 14 (1963), 1-26. · Zbl 0139.20105 · doi:10.1007/BF00250690
[29]Van der Veen, C. J., & I. M. Whillans, Flow laws for glacier ice: comparison of numerical predictions and field measurements, J. Glaciology 36 (1990), 324-339. · doi:10.3189/002214390793701372