zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitary waves of the equal width wave equation. (English) Zbl 0759.65086

In a recent paper of the authors [ibid. 91, No. 2, 441-459 (1990; Zbl 0717.65072)] a Galerkin method with cubic B-spline finite elements was proposed to obtain accurate and efficient numerical solutions to the regularized long wave (RLW) equation. Here, the same method is applied to the equal width equation and to simulate the migration and interaction of solitary waves and evolution of a Maxwellian initial condition.

For small δ (U t +UU x -δU xxt =0) only positive waves are formed and the behaviour mimics that of the KdV and RLW equations. For larger values of δ both positive and negative solitary waves are generated.

MSC:
65Z05Applications of numerical analysis to physics
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
35L75Nonlinear hyperbolic PDE of higher (>2) order