zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite difference discretization of the cubic Schrödinger equation. (English) Zbl 0762.65070

The initial-boundary value problem for the cubic Schrödinger equation in one space dimension is investigated in the framework in the finite difference approach. The author proposes a Crank-Nicolson type discretization for which he proves the existence theorem and establishes error estimates as well as some conservation and convergence properties.

The essential tools used are a Brouwer-type fixed point theorem and the discrete version of Gronwall’s inequality. The corresponding nonlinear discrete equations are then linearized at each time level by Newton’s method and solved by an algorithm developed for this purpose, for which an error estimate is established.

Reviewer: O.Titow (Berlin)
MSC:
65Z05Applications of numerical analysis to physics
65M06Finite difference methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
65M15Error bounds (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations