zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Metrically well-set minimization problems. (English) Zbl 0762.90073
Summary: A concept of well-posedness, or more exactly of stability in a metric sense, is introduced for minimization problems on metric spaces generalizing the notion due to Tykhonov to situations in which there is no uniqueness of solutions. It is compared with other concepts, in particular to a variant of the notion after Hadamard reformulated via a metric semicontinuity approach. Concrete criteria of well-posedness are presented, e.g., for convex minimization problems.

90C31Sensitivity, stability, parametric optimization
49J27Optimal control problems in abstract spaces (existence)
90C25Convex programming
90C48Programming in abstract spaces
[1]Bednarczuk E (1982) On upper semicontinuity of global minima in constrained optimization problems. J Math Anal Appl 86:309-318 · Zbl 0482.90080 · doi:10.1016/0022-247X(82)90225-6
[2]Bednarczuk E, Penot J-P (to appear) On the positions of the notions of well-posed minimization problems. Boll Un Mat Ital
[3]Chavent G (1990) A new sufficient condition for the well-posedness of nonlinear least square problems arising in identification and control, in: Optimization and Control, Proceedings IFIP Conference, Antibes 1990, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, pp 452-463
[4]?oban MM, Kenderov PS, Revalski JP (1989) Generic well-posedness of optimization problems in topological spaces. Mathematika 36:301-324 · Zbl 0679.49010 · doi:10.1112/S0025579300013152
[5]Dmitriev MG, Poleschuk VS (1972) On the regularization of a class of unstable extremal problems. USSR Comput Math and Math Phys 12:1316-1318
[6]Dolecki S, Greco G, Lechicki A (1985) Compactoid and compact filters. Pacific J Math 117:69-98
[7]Dolecki S, Rolewicz S (1978) A characterization of semicontinuity-preserving multifunctions. J. Math Anal Appl 65:26-31 · Zbl 0427.54009 · doi:10.1016/0022-247X(78)90198-1
[8]Furi M, Vignoli A (1970) About well-posed optimization problems for functionals in metric spaces. J Optim Theory Appl 5:225-229 · Zbl 0188.48802 · doi:10.1007/BF00927717
[9]Furi M, Vignoli A (1970) A characterization of well-posed minimum problems in a complete metric space. J Optim Theory Appl 5:452-461 · Zbl 0184.44603 · doi:10.1007/BF00927444
[10]Klein E, Thompson AC (1984) Theory of Correspondences, Wiley-Interscience, New York.
[11]Lucchetti R (1984-1985) On the continuity of the minima for a family of constrained optimization problems. Numer Funct Anal Optim 7:349-362 · Zbl 0574.49017 · doi:10.1080/01630568508816198
[12]Lucchetti R, Patrone F (1981) A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities. Numer Funct Anal Optim 3:461-476 · Zbl 0479.49025 · doi:10.1080/01630568108816100
[13]Lucchetti R, Patrone F (1982-1983) Some properties of well-posed variational inequalities governed by linear operators. Numer Funct Anal Optim 5:341-361
[14]Lucchetti R, Patrone F (1982) Hadamard and Tykhonov well-posedness of a certain class of convex functions. J Math Anal Appl 88:204-215 · Zbl 0487.49013 · doi:10.1016/0022-247X(82)90187-1
[15]Ortega JM, Rheinboldt WC (1970) Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York
[16]Patrone F (1987) Most convex functions are nice. Numer Funct Anal Optim 9:359-369 · doi:10.1080/01630568708816237
[17]Patrone F (1987) Well-posedness as an ordinal property. Riv Mat Pura Appl 1:95-104
[18]Penot JP (1983) Compact nets, filters and relations. J Math Anal Appl 93:400-417 · Zbl 0537.54002 · doi:10.1016/0022-247X(83)90184-1
[19]Penot J-P (1989) Metric regularity, openness and Lipschitzian behaviour of muitifunctions, Nonlinear Anal TMA 13:629-643 · Zbl 0687.54015 · doi:10.1016/0362-546X(89)90083-7
[20]Penot J-P, Volle M (1990) Inversion of real-valued functions and applications, Z Oper Res 34:117-141
[21]Revalski JP (1985) Generic properties concerning well-posed optimization problems. C R Acad Bulgare Sci 38:1431-1434
[22]Revalski JP (1987) Generic well-posedness in some classes of optimization problems. Acta Univ Carolin-Math Phys 28:117-125
[23]Tykhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Dokl Akad Nauk SSSR 151:501-504
[24]Vainberg MM (1970) Le probleme de la minimisation des fonctionelles non lineaires. C.I.M.E. IV ciclo Cremonese, Rome.
[25]Zeidler E (1985) Nonlinear Functional Analysis and Its Applications III, Springer-Verlag, New York.
[26]Zolezzi T (1978) On equiwellset minimum problems. Appl Math Optim 4:209-223 · Zbl 0381.90105 · doi:10.1007/BF01442140