zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonparametric spline regression with prior information. (English) Zbl 0771.62027

Summary: By using prior information about the regression curve we propose new nonparametric regression estimates. We incorporate two types of information. First, we suppose that the regression curve is similar in shape to a family of parametric curves characterized as the solution to a linear differential equation. The regression curve is estimated by penalized least squares with the differential operator defining the smoothness penalty. We discuss in particular growth and decay curves and take a time transformation to obtain a tractable solution.

The second type of prior information is linear equality constraints. We estimate unknown parameters by generalized cross-validation or maximum likelihood and obtain efficient O(n) algorithms to compute the estimate of the regression curve and the cross-validation and maximum likelihood criterion functions.

MSC:
62G07Density estimation
62M10Time series, auto-correlation, regression, etc. (statistics)
65D07Splines (numerical methods)
65D10Smoothing, curve fitting