zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. (English) Zbl 0775.90153
90B06Transportation, logistics
90C27Combinatorial optimization
90-08Computational methods (optimization)
[1]E. Aarts and J. Korst,Simulated Annealing and Boltzmann Machine (Wiley, 1989).
[2]Y. Agarwal, K. Mathur and H. Salkin, A set partitioning based exact algorithm for the vehicle routing problem, Networks 19(1989)731–749. · Zbl 0682.90050 · doi:10.1002/net.3230190702
[3]K. Altinkemer and B. Gavish, Parallel savings based heuristics for the delivery problem, Oper. Res. 39(1991)456–469. · Zbl 0744.90026 · doi:10.1287/opre.39.3.456
[4]J. Beasley, Route first-cluster second methods for vehicle routing, Omega 118(1983)403–408. · doi:10.1016/0305-0483(83)90033-6
[5]W. Bell, L. Dalberto, M. Fisher, A. Greenfield, R. Jaikumar, R. Mack and P. Prutzman, Improving distribution of industrial gases with an on-line computerized routing and scheduling systems, Interfaces 13(1983)4–23. · doi:10.1287/inte.13.6.4
[6]L. Bodin, B. Golden, A. Assad and M. Ball, Routing and scheduling of vehicles and crews: The state of the art, Comp. Oper. Res. 10(1983)69–211.
[7]L. Bodin, Twenty years of routing and scheduling, Oper. Res. 38(1990)571–579. · doi:10.1287/opre.38.4.571
[8]G. Brown and G. Graves, Real-time dispatch of petroleum tank trunks, Manag. Sci. 27(1981)19–32. · doi:10.1287/mnsc.27.1.19
[9]N. Christofides, Vehicle routing, in:The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, ed. E. Lawler, J. Lenstra, A. Rinnooy Kan and D. Shmoys (Wiley, 1985).
[10]N. Christofides and S. Eilon, An algorithm for the vehicle dispatching problem, Oper. Res. Quart. 20(1969)309–318. · doi:10.1057/jors.1969.75
[11]N. Christofides, A. Mingozzi and P. Toth, The vehicle routing problem, in:Combinatorial Optimization, ed. N. Christofides, A. Mingozzi, P. Toth and C. Sandi (Wiley, 1979).
[12]N. Christofides, A. Mingozzi and P. Toth, Exact algorithms for the vehicle routing problem, based on spanning tree shortest path relaxation, Math. Progr. 20(1981)255–282. · Zbl 0461.90067 · doi:10.1007/BF01589353
[13]N. Christofides, A. Mingozzi and P. Toth, State space relaxation procedures for the computation of bounds to routing problems, Networks 11(1981)145–164. · Zbl 0458.90071 · doi:10.1002/net.3230110207
[14]G. Clarke and J.W. Wright, Scheduling of vehicles from a central depot to a number of delivery points, Oper. Res. 12(1964)568–581. · doi:10.1287/opre.12.4.568
[15]S. Evans and J. Norback, The impact of a decision-support system for vehicle routing in a food service supply situation, J. Oper. Res. Soc. 36(1985)467–472.
[16]M. Fisher, R. Greenfield, R. Jaikumar and J. Lester, A computerized vehicle routing application, Interfaces 1(1982)45–52.
[17]M. Fisher and R. Jaikumar, A generalised assignment heuristic for vehicle routing, Networks 11(1981)109–124. · doi:10.1002/net.3230110205
[18]M. Fisher, Lagrangian optimization algorithms for vehicle routing problems, in:Operational Research’87, IFORS, 1988, ed. G.K. Rand (Elsevier Science/North-Holland, 1988).
[19]T. Gaskell, Bases for vehicle fleet scheduling, Oper. Res. Quart. 18(1967)367–384. · doi:10.1057/jors.1967.44
[20]M. Gendreau, A. Hertz and G. Laporte, A tabu search heuristic for the vehicle routing problem, Report CRT-777, Centre de Recherche sur les Transports, Université de Montréal, Canada (1991).
[21]B. Gillet and L. Miller, A heuristic algorithm for vehicle dispatches, Oper. Res. 24(1976)340–349.
[22]F. Glover, Future paths for integer programming and links to artificial intelligence, Comp. Oper. Res. 13(1986)533–549. · Zbl 0615.90083 · doi:10.1016/0305-0548(86)90048-1
[23]F. Glover, Tabu search, Part I, ORSA J. Comput. 1(1989)190–206.
[24]F. Glover, Tabu search, Part II, ORSA J. Comput. 2(1990)4–32.
[25]F. Glover, Simple tabu thresholding in optimization, Graduate of Business, Unicersity of Colorado, Boulder (May 1992).
[26]B. Golden and E. Watts, Computerized vehicle routing in the soft drink industry, Oper. Res. 35(1987)6–17. · doi:10.1287/opre.35.1.6
[27]B. Golden and A. Assad,Vehicle Routing: Methods and Studies (Elsevier Science/North-Holland, 1988).
[28]M. Haimovich and A.H.G. Rinnooy Kan, Bounds and heuristics for capacitated routing problems, Math. Oper. Res. 10(1985)527–542. · Zbl 0582.90030 · doi:10.1287/moor.10.4.527
[29]D.S. Johnson, Local optimization and the traveling salesman problem,Proc. 17th Int. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science (1990) pp. 446–461.
[30]S. Kirkpatrick, J.C.D. Gelott and M.P. Vecchi, Optimization by simulated annealing, Science 220(1983)671–680. · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[31]G. Laporte, Y. Nobert and M. Desrochers, Optimal routing under capacity and distance restriction, Oper. Res. 33(1985)1050–1073. · Zbl 0575.90039 · doi:10.1287/opre.33.5.1050
[32]G. Laporte and Y. Nobert, Exact algorithms for the vehicle routing problem, Ann. Discr. Math. 31(1987)147–184.
[33]J. Lenstra and A. Rinnooy Kan, Complexity of vehicle routing and scheduling problems, Networks 11(1981)221–228. · doi:10.1002/net.3230110211
[34]S. Lin, Computer solutions of the traveling salesman problem, Bell Syst. Comp. J. 44(1965)2245–2269.
[35]S. Lin and B.W. Kernighan, An effective heuristic algorithm for the travelling salesman problem, Oper. Res. 21(1973)2245–2269. · Zbl 0256.90038 · doi:10.1287/opre.21.2.498
[36]R.H. Mole and S.R. Jameson, A sequential route-building algorithm employing a generalised savings criterion, Oper. Res. Quart. 27(1976)503–511. · doi:10.1057/jors.1976.95
[37]M. Nelson, K. Nygard, J. Griffin and W. Shreve, Implementation techniques for the vehicle routing problem, Comp. Oper. Res. 12(1985)273–283. · Zbl 0608.90041 · doi:10.1016/0305-0548(85)90026-7
[38]I. Or, Traveling salesman-type combinatorial optimization problems and their relation to the logistics of regional blood banking, Ph.D. Dissertation, Northwestern University, Evanston, IL (1976).
[39]I.H. Osman, Metastrategy simulated annealing and tabu search for combinatorial optimization problems, Ph.D. Dissertation, The Management School, Imperial College of Science and Medicine, University of London, London (1991).
[40]I.H. Osman, Heuristics for combinatorial optimization problems: development and new directions,Proc. 1st Seminar on Information Technology and Applications, Markfield Conference Centre, Leicester, UK (1991).
[41]I.H. Osman, A comparison of heuristics for the generalised assignment problem, Working Paper, University of Kent, Canterbury, UK (1990).
[42]I.H. Osman and N. Christofides, Simulated annealing and descent algorithms for capacitated clustering problems, presented as EURO-XI, Beograd, Yugoslavia (1989).
[43]I.H. Osman and C.N. Potts, Simulated annealing for permutation flow-shop scheduling, Omega 17(1989)551–557. · doi:10.1016/0305-0483(89)90059-5
[44]H. Paessens, Saving algorithms for the vehicle routing problem, Eur. J. Oper. Res. 34(1988)336–344. · Zbl 0635.90047 · doi:10.1016/0377-2217(88)90154-3
[45]R.A. Russell, An effective heuristic for theM-tour traveling salesman problem with some side conditions, Oper. Res. 25(1977)517–524. · Zbl 0377.90094 · doi:10.1287/opre.25.3.517
[46]W.R. Stewart, Jr. and B.L. Golden, A Lagrangian relaxation heuristic for vehicle routing, Eur. J. Oper. Res. 15(1984)84–88. · Zbl 0525.90092 · doi:10.1016/0377-2217(84)90050-X
[47]E. Taillard, Robust tabu search for the quadratic assignment problem, Working Paper ORWP 90/10, Département de Mathématiques, Ecole Polytechnic Fédérale de Lausanne, Switzerland (1990).