zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Moment integrals of powers of Airy functions. (English) Zbl 0784.33003

An analytic approach to compute integrals: J n (α)= 0 z n A i ( z ) α dz, J n ' (α)= 0 A i ' (z) α dz is presented, where Ai ' [z] is the derivative of the Airy function Ai(z) and α is any real number. Its mathematical basis lies on the introduction of an auxiliary function:

i k,β (α)= 0 z k A i ( z ) β A i ' (z) α-β dz,withβα·

and reduction to a linear partial difference equation with two variables and then derivation of recurrence relations for J n and J n ' .

33C10Bessel and Airy functions, cylinder functions, 0 F 1
[1]J. R. Albright and E. P. Gavthas,Integrals involving Airy Functions, J. Phys. A: Math. Gen.20, 2663-2665 (1985).
[2]J. Kelber, Ch. Schnittler and H. Ubensee,Integral Formulae for Airy Functions, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau31, 147-156 (1985).
[3]A. Apelblat,Table of Definite and Indefinite Integrals, Elsevier, Amsterdam 1983.
[4]A. I. Nikishov and V. I. Ritus,Group Theoretical Methods in Physics v. I, II, VNU Science Press, Utrecht 1986.
[5]L. W. Pearson,A Scheme for Automatic Computation of Fock-type Integrals, Institute of Electrical and Electronic Engineers, Transactions on Antennas and Propagation35, 1111-1118 (1987). · Zbl 0946.78517 · doi:10.1109/TAP.1987.1143985
[6]C. M. Bender, K. A. Milton, S. S. Pinsky and L. M. Simmons,A New Perturbative Approach to Nonlinear Problems, J. Math. Phys.30, 1447-1455 (1989). · Zbl 0684.34008 · doi:10.1063/1.528326
[7]B. J. Laurenzi,An Analytic Solution to the Thomas-Fermi Equation, J. Math. Phys.31, 2535-2537 (1990). · Zbl 0743.34021 · doi:10.1063/1.528998
[8]M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, Natl. Bur. of Standards Applied Math. Series55, Chap. 10 (1964).
[9]R. E. Mickens,Difference Equations, Van Nostrand Reinhold, New York 1987.
[10]ibid., ref. 8., Chap. 15.
[11]ibid., ref. 8., Chap. 25.
[12]ibid., ref. 8., Chap. 6.