zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The validity of modulation equations for extended systems with cubic nonlinearities. (English) Zbl 0786.35122

Summary: Modulation equations play an essential role in the understanding of complicated systems near the threshold of instability. Here we show that the modulation equation dominates the dynamics of the full problem locally, at least over a long time-scale. For systems with no quadratic interaction term, we develop a method which is much simpler than previous ones. It involves a careful bookkeeping of errors and an estimate of Gronwall type.

As an example for the dissipative case, we find that the Ginzburg-Landau equation is the modulation equation for the Swift-Hohenberg problem. Moreover, the method also enables us to handle hyperbolic problems: the nonlinear Schrödinger equation is shown to describe the modulation of wave packets in the Sine-Gordon equation.

MSC:
35Q55NLS-like (nonlinear Schrödinger) equations
35A35Theoretical approximation to solutions of PDE