zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative methods by space decomposition and subspace correction. (English) Zbl 0788.65037

This paper gives a systematic introduction to a number of iterative methods for symmetric positive definite problems. It presents a unified theory for iterative algorithms such as Jacobi and Gauss-Seidel iterations, diagonal preconditioning, domain decomposition techniques, multigrid methods, multilevel nodal basis preconditioners and hierarchical basis methods. By using the notions of space decomposition and subspace correction, all these algorithms are classified into two groups: parallel subspace correction (PSC) and successive subspace correction (SSC) methods. These two types of methods are similar in nature to the familiar Jacobi and Gauss-Seidel methods, respectively.

The above framework of theory is used to establish a quite general abstract theory of convergence which may be applied relatively simply to a particular problem. It is only necessary to specify a decomposition of the underlying space and the corresponding subspace solvers. The paper is organized as follows: §2 gives a brief discussion of self-adjoint operators and the conjugate gradient method. In §3 a general framework for linear iterative methods for symmetric positive problems is presented. In §4 an abstract theory of convergence is established for the algorithms in the framework of §3. As a preparation for applications of the theory §5 introduces a model finite element method. The rest of the paper is devoted to multilevel and domain decomposition methods.


MSC:
65F10Iterative methods for linear systems
65F35Matrix norms, conditioning, scaling (numerical linear algebra)
65N55Multigrid methods; domain decomposition (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)