[1] | [D1] Dunkl, C.F.: Reflection groups and orthogonal polyomials on the sphere. Math. Z.197, 33-60 (1988) · Zbl 0616.33005 · doi:10.1007/BF01161629 |

[2] | [D2] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc.311, 167-183 (1989) · doi:10.1090/S0002-9947-1989-0951883-8 |

[3] | [D3] Dunkl, C.F.: Operators commuting with Coxeter groups actions on polynomials. In: Stanton, D. (ed.). Invariant Theory and Tableaux, pp. 107-117. Berlin Heidelberg New York: Springer, 1990 |

[4] | [D4] Dunkl, C.F.: Integral kernels with reflection group invariance. Can J. Math.43, 1213-1227 (1991) · Zbl 0827.33010 · doi:10.4153/CJM-1991-069-8 |

[5] | [D5] Dunkl, C.F.: Hankel transforms associated to finite reflection groups. In: Proceedings of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications at AMS meeting in Tampa, Fa March 22-23. (Contemp. Math.138 (1992) Providence, RI: Am. Math. Soc. |

[6] | [Hec] Heckman, G.J.: A remark on the Dunkl differential-difference operators. In: Proceedings of the Bowdoin conference on reductive groups, 1989. |

[7] | [Hel] Helgason, S.: Groups and Geometric Analysis. New York London: Academic Press, 1984 |

[8] | [M] Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. Anal.13, 988-1007 (1982) · Zbl 0498.17006 · doi:10.1137/0513070 |

[9] | [O] Opdam, E.M.: Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compos. Math.85, 333-373 (1993) |

[10] | [R] Rudin, W.: Functional analysis. New Delhi: Tata McGraw-Hill 1973 |

[11] | [S] Sneddon, I.N.: Fourier Transforms. Toronto, London New York: McGraw-Hill 1951 |

[12] | [T] Treves, F.: Topological vector spaces, distributions and kernels. New York London: Academic Press, 1967 |

[13] | [Hec] Heckman, G.J.: A remark on the Dunkl differential-difference operators. In: Barker, W., Sally, P. (eds.) Harmonic analysis on reductive groups (Progress in Mathematics101). Boston Basel Berlin: Birkhäuser, 1991 |