zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and uniqueness criteria for conservative uni-instantaneous denumerable Markov processes. (English) Zbl 0791.60063
Until now, denumerable Markov processes with instantaneous states have not been extensively considered, and so we present a detailed examination of the conservative uni-instantaneous (CUI) case. We determine criteria for the existence and uniqueness of a specific CUI pregenerator, and consider the general problem of constructing CUI processes.
Reviewer: A.Chen

60J27Continuous-time Markov processes on discrete state spaces
[1]Blackwell, D.: Another countable Markov process with only instantaneous states. Ann. Math. Stat.29, 313-316 (1958) · Zbl 0085.12702 · doi:10.1214/aoms/1177706735
[2]Chen, A.Y., Renshaw, E.: Markov branching processes with instantaneous immigration. Probab. Theory Relat. Fields87, 209-240 (1990) · Zbl 0695.60080 · doi:10.1007/BF01198430
[3]Chung, K.L.: On the boundary theory for Markov chains. Acta. Math.115, 111-163 (1966). · Zbl 0315.60041 · doi:10.1007/BF02392205
[4]Chung, K.L.: Markov chains with stationary transition probabilities. Berlin Heidelberg New York: Springer 1967
[5]Chung, K.L.: Lectures on boundary theory for Markov chains. (Ann. Math. Stud., 65) Princeton University Press 1970
[6]Cinlar, E.: Introduction to stochastic processes. Englewood Cliffs, NY: Prentice-Hall 1975
[7]Doob, J.L.: Markoff chains-Denumerable case. Trans. Am. Math. Soc.58, 455-473 (1945)
[8]Feller, W.: On the integro-differential equations of purely discontinuous Markov processes. Trans. Am. Math. Soc.48, 488-515 (1940) · doi:10.1090/S0002-9947-1940-0002697-3
[9]Feller, W.: On boundaries and lateral conditions for the Kolmogoroff differential equations. Ann. Math.65, 527-570 (1957) · Zbl 0084.35503 · doi:10.2307/1970064
[10]Feller, W.: The birth and death processes as diffusion processes. J. Math. Pures Appl.9, 301-345 (1959)
[11]Freedman, D.: Markov chains. Berlin Heidelberg New York: Springer 1983
[12]Freedman, D.: Approximating countable Markov chains. Berlin Heidelberg New York: Springer 1983
[13]Hou, Z.T.: The uniqueness criterion for Q-processes (in Chinese). Sinica2, 115-130 (1974)
[14]Hou, Z.T., Guo, Q.F.: Homogeneous denumerable Markov processes. Berlin Heidelberg New York: Springer 1988
[15]Kemeny, J.G., Snell, J., Knapp, A.W.: Denumerable Markov chains. Princeton, NJ: Van Nostrand 1966
[16]Kendall, D.G.: Some analytical properties of continuous stationary Markov transition functions. Trans. Am. Math. Soc78, 529-540 (1955) · doi:10.1090/S0002-9947-1955-0067401-2
[17]Kendall, D.G.: A totally unstable denumerable Markov process. Q. J. Math., Oxford9, 149-160 (1958) · Zbl 0081.13301 · doi:10.1093/qmath/9.1.149
[18]Kendall, D.G., Reuter, G.E.H.: Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on ?. Proc. Intern. Congr. Math. Amsterdam, Vol. III, 377-415. Amsterdam: North-Holland 1954
[19]Kolmogorov, A.N.: On the differentiability of the transition probabilities in homogeneous Markov processes with a denumerable number of states. Moskov. Gos. Univ. U?enye Zapiski MGY. 148 Mat.4, 53-59 (1951)
[20]Neveu, J.: Lattice methods and submarkovian processes. Proc. 4th Berk. In: Symp. Math. Statist. Prob., vol 2, pp. 347-391. Berkeley, CA: University of California Press 1960
[21]Reuter, G.E.H.: Denumerable Markov processes and the associated semigroup on ?. Acta. Math.97, 1-46 (1957) · Zbl 0079.34703 · doi:10.1007/BF02392391
[22]Reuter, G.E.H.: Denumerable Markov processes (II). J. Lond. Math. Soc.34, 81-91 (1959) · Zbl 0089.13803 · doi:10.1112/jlms/s1-34.1.81
[23]Reuter, G.E.H.: Denumerable Markov processes (III). J. Lond. Math. Soc.37, 63-73 (1962) · Zbl 0114.33604 · doi:10.1112/jlms/s1-37.1.63
[24]Reuter, G.E.H.: Remarks on a Markov chain example of Kolmogorov. Z. Wahrscheinlichkeitstheor. Verw. Geb.13, 315-320 (1969) · Zbl 0176.47803 · doi:10.1007/BF00539207
[25]Reuter, G.E.H.: Denumerable Markov processes (IV). On C.T. Hou’s uniqueness theorem for Q-semigroups. Z. Wahrscheinlichkeitstheor. Verw. Geb.33, 309-315 (1976) · Zbl 0361.60041 · doi:10.1007/BF00534781
[26]Rogers, L.C.G., Williams, D.: Construction and approximation of transition matrix functions. Adv. Appl. Probab., Suppl. 133-160 (1986)
[27]Tang, L.Q.: The construction of uni-instantaneous birth and death processes. Chin. Ann. Math.8A(5), 565-570 (1987)
[28]Williams, D.: On the construction problem for Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb.3, 227-246 (1964) · Zbl 0143.19804 · doi:10.1007/BF00534911
[29]Williams, D.: A note on the Q-matrices of Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb.7, 116-121 (1967) · Zbl 0178.20304 · doi:10.1007/BF00536325
[30]Williams, D.: The Q-matrix problem. In: Meye, P.A. (ed.) Séminaire de Probabilities X: (Lect. Notes Math., vol 511, pp. 216-234) Berlin Heidelberg New York: Springer 1976
[31]Williams, D.: Diffusions, Markov processes and martingales, vol 1, Foundations. New York: Wiley 1979
[32]Yang, X.Q.: The construction theory of denumerable Markov processes. New York: Wiley 1990