zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wavelet approximation methods for pseudodifferential equations. I: Stability and convergence. (English) Zbl 0794.65082

This is the first of two papers which are concerned with generalized Petrov-Galerkin schemes for elliptic periodic pseudodifferential equations in n covering classical Galerkin methods, collocation, and quasi-interpolation. These methods are based on a general setting of multiresolution analysis, i.e., of sequences of nested spaces which are generated by refinable functions. In this part we develop a general stability and convergence theory for such a framework which recovers and extends many previously studied special cases. The key to the analysis is a local principle due to the second author. Its applicability relies here on the validity of a sufficiently general version of a so called discrete commutator property. This property is established for the present general setting by proving certain super- convergence results for the projectors defining the numerical schemes.

These results provide important prerequisites for developing and analysing in a second paper [Wavelet approximation methods. II: Matrix compression and fast solution, Adv. Comput. Math. (to appear)] methods for the fast solution of the resulting linear systems. These methods are based on compressing the stiffness matrices relative to wavelet bases associated with the underlying multiresolution analysis.


MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
65N35Spectral, collocation and related methods (BVP of PDE)
42C40Wavelets and other special systems
35S15Boundary value problems for pseudodifferential operators
References:
[1]Agranovich, M.S.: On elliptic pseudodifferential operators on a closed curve. Trans. Mosc. Math. Soc.47, 23–74 (1985)
[2]Arnold, D.N., Wendland, W.L.: The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math.47, 317–341 (1985) · Zbl 0592.65077 · doi:10.1007/BF01389582
[3]Wavelet analysis and the numerical solutions of partial differential equations. Progress Report. Cambridge, MA. Aware Inc.: June 1990
[4]Ben-Artzi, A., Ron, A.: On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal.21, 1550–1562 (1990) · Zbl 0721.41021 · doi:10.1137/0521085
[5]Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math.XLIV, 141–183 (1991) · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[6]de Boor, C., Höllig, K., Riemenschneider, S.: Box-splines. Berlin Heidelberg New York: Springer 1992
[7]Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Mem. Am. Math. Math. Soc.93, no. 453 (1991)
[8]Chui, C.K., Stöckler, J., Ward, J.D.: Compactly supported box spline wavelets. Approx. Theory Appl.8, 77–100 (1992)
[9]Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math.45, 485–560 (1992) · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[10]Coifman, R., Meyer, Y.: Au-delà des Opérateurs Pseudo-Différentiels. (Astérisque, no. 57) Paris: Soc. Math. Fr. 1978
[11]Costabel, M.: Principles of boundary element methods. Comp. Phys. Rep.6, 243–274 (1987) · doi:10.1016/0167-7977(87)90014-1
[12]Costabel, M., McLean, W.: Spline collocation for strongly elliptic equations on the torus. Numer. Math.62, 511–538 (1992) · Zbl 0767.65079 · doi:10.1007/BF01396241
[13]Costabel, M., Wendland, W.: Strong ellipticity of boundary integral operators. J. Reine Angew. Math.372, 39–63 (1986)
[14]Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math.63, 315–344 (1992) · Zbl 0757.65031 · doi:10.1007/BF01385864
[15]Dahmen, W., Micchelli, C.A.: On the local linear independence of the translates of a box spline. Studia Math.82, 243–263 (1985)
[16]Dahmen, W., Micchelli, C.A.: Biorthogonal wavelet expansion. (in preparation)
[17]Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution. Adv. Comput. Math.1, 259–335 (1993) · Zbl 0826.65093 · doi:10.1007/BF02072014
[18]Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.41, 909–996 (1988) · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[19]DeVore, R., Jawerth, B., Popov, V.: Compression of wavelet decompositions. Am. J. Math.114, 737–785 (1992) · Zbl 0764.41024 · doi:10.2307/2374796
[20]DeVore, R., Popov, V.: Interpolation of Besov spaces. Trans. Am. Math. Soc.305, 397–414 (1988) · doi:10.1090/S0002-9947-1988-0920166-3
[21]Glowinski, R.R., Lawton, W.M., Ravachol, M., Tenenbaum, E.: Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. Cambridge, MA: Aware Inc. (Preprint 1989)
[22]Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math.54, 463–491 (1989) · Zbl 0641.65038 · doi:10.1007/BF01396324
[23]Hörmander, L.: The Analysis of Linear Partial Differential Operators, vols. 1–4. (Grundlehren Math. Wiss.) Berlin Heidelberg New York: Springer 1985
[24]Jaffard, S.: Wavelet methods for fast resolution of elliptic problems. (Preprint 1990)
[25]Jia, R.Q., Micchelli, C.A.: Using the refinement equation for the construction of prewavelets II: Powers of two. In: Laurent, P., Le Méhanté, A., Schumaker, L.L. (eds.) pp. 209–246. Curves and Surfaces. New York: Academic Press 1991
[26]Johnen, H., Scherer, K.: On thek-functional and moduli of continuity and some applications. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables. (Lect. Notes Math., vol. 571, pp. 119–140). Berlin Heidelberg New York: Springer 1977
[27]Kohn, J., Nirenberg, L.: On the algebra of pseudo-differential operators. Commun. Pure Appl. Math.,18, 269–305 (1965) · Zbl 0171.35101 · doi:10.1002/cpa.3160180121
[28]Kumano-go, H.: Pseudodifferential Operators. Boston: MIT Press 1981
[29]Mallat, S.: Multiresolution approximation and wavelet orthonormal bases ofL 2. Trans. Am. Math. Soc.315, 69–88 (1989)
[30]McLean, W.: Local and global descriptions of periodic pseudodifferential operators. Math. Nachr.150, 151–161 (1991) · Zbl 0729.35149 · doi:10.1002/mana.19911500112
[31]McLean, W.: Periodic pseudodifferential operators and periodic function spaces. Technical Report. Australia: Univ. of New South Wales 1989
[32]Meyer, Y.: Ondelettes et Opèrateurs 1: Ondelettes. Paris: Hermann 1990
[33]Mikhlin, S., Prössdorf, S.: Singular Integral Operators, Berlin Heidelberg New York: Springer 1986
[34]Prössdorf, S.: A localization principle in the theory of finite element methods. In: Friedrich, V. et al. (eds.) Probleme und Methoden der Mathematischen Physik. 8. Tagung in Karl-Marx-Stadt, 1983. (Teubner-Texte Math., Bd. 63, pp. 169–1777) Leipzig: Teubner 1984
[35]Prössdorf, S.: Ein Lokalisierungsprinzip in der Theorie der Spline-Approximationen und einige Anwendungen. Math. Nachr.119, 239–255 (1984) · Zbl 0601.65033 · doi:10.1002/mana.19841190123
[36]Prössdorf, S., Rathsfeld, A.: A spline collocation method for singular integral equations with piecewise continuous coefficients. Integral Equations Oper. Theory7, 536–560 (1984) · Zbl 0573.65106 · doi:10.1007/BF01238865
[37]Prössdorf, S., Rathsfeld, A.: Mellin techniques in the numerical analysis for one-dimensional singular integral equations Report R-MATH-06/88. Berlin: Karl-Weierstrass-Institut 1988
[38]Prössdorf, S., Schmidt, G.: A finite element collocation method for singular integral equations. Math. Nachr.100, 33–60 (1981) · Zbl 0543.65089 · doi:10.1002/mana.19811000104
[39]Prössdorf, S., Schneider, R.: A spline collocation method for multi-dimensional strongly elliptic pseudodifferential operators of order zero. Integral Equations Oper. Theory4, 399–435 (1991) · Zbl 0737.47043 · doi:10.1007/BF01218505
[40]Prössdorf, S., Schneider, R.: Spline approximation methods for multidimensional periodic pseudodifferential equations. Integral Equations Oper. Theory15, 626–672 (1992) · Zbl 0757.65146 · doi:10.1007/BF01195782
[41]Prössdorf, S., Schneider, R.: Pseudodifference operators–A symbolic calculus for approximation methods for periodic pseudodifferential equations. Preprint TH-Fb Math. Darmstadt 1991
[42]Prössdorf, S., Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Berlin: Akademie Verlag, 1991, and Boston Basel Stuttgart: Birkhäuser 1991
[43]Riemenschneider, S., Shen, Z.: Wavelets and pre-wavelets in low dimensions. J. Approx. Theory71, 18–38 (1992) · Zbl 0772.41019 · doi:10.1016/0021-9045(92)90129-C
[44]Schmidt, G.: On collocation for pseudodifferential equations on closed curves. Math. Nachr.126, 183–196 (1986) · Zbl 0607.65049 · doi:10.1002/mana.19861260112
[45]Schmidt, G.: Splines und die näherungsweise Lösung von Pseudodifferentialgleichungen auf geschlossenen Kurven. Report R-MATH-09/86. Berlin: Karl-Weierstraß-Institut 1986
[46]Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Berlin Heidelberg New York: Springer 1985
[47]Silbermann, B.: Lokale Theorie des Reduktionsverfahrens für Toeplitzoperatoren. Math. Nachr.104, 137–146 (1981) · Zbl 0494.47018 · doi:10.1002/mana.19811040111
[48]Silbermann, B.: Lokale Theorie des Reduktionsverfahrens für singuläre Integraloperatoren. Z. Anal. Anwend.1, 45–56 (1982)
[49]Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970
[50]Taylor, M.: Pseudodifferential operators, Princeton, NJ: Princeton University Press 1981
[51]Triebel, H.: Interpolation Theory, Function Spaces and Differential Operators. Amsterdam: North-Holland 1978
[52]Wendland, W.L.: On some mathematical aspects of boundary element methods for elliptic problems. In: Whiteman, J. (ed.) Mathematics of Finite Elements and Applications V, pp. 193–227. London: Academic Press 1985
[53]Wendland, W.L.: Strongly elliptic boundary integral equations. In: Iserles, A., Powell, M. (eds.) The State of the Art in Numerical Analysis, pp. 511–562, Oxford: Clarendon 1987