zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonmonotonic trust region algorithm. (English) Zbl 0797.90088
Summary: A nonmonotonic trust region method for unconstrained optimization problems is presented. Although the method allows the sequence of values of the objective function to be nonmonotonic, convergence properties similar to those for the usual trust region method are proved under certain conditions, including conditions on the approximate solutions to the subproblem. To make the solution satisfy these conditions, an algorithm to solve the subproblem is also established. Finally, some numerical results are reported which show that the non-monotonic trust region method is superior to the usual trust region method according to both the number of gradient evaluations and the number of function evaluations.

MSC:
90C30Nonlinear programming
90-08Computational methods (optimization)
References:
[1]Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., andPedersen, H. C.,The Watchdog Technique for Forcing Convergence in Algorithms for Constrained Optimization, Mathematical Programming Study, Vol. 26, pp. 1-17, 1986.
[2]Grippo, L., Lampariello, F., andLucidi, S.,A Nonmonotone Line Search Technique for Newton’s Methods, SIAM Journal on Numerical Analysis, Vol. 23, pp. 707-716, 1986. · Zbl 0616.65067 · doi:10.1137/0723046
[3]Grippo, L., Lampariello, F., andLucidi, S.,A Truncated Newton Method with Nonmonotone Line Search for Unconstrained Optimization, Journal of Optimization Theory and Applications, Vol. 60, pp. 401-419, 1989. · Zbl 0632.90059 · doi:10.1007/BF00940345
[4]More, J. J.,Recent Development in Algorithms and Software for Trust Region Methods, Mathematical Programming: The State of the Art, Edited by A. Bachem, M. Grotschel, and B. Kortz, Springer-Verlag, Berlin, Germany, pp. 258-287, 1983.
[5]Shultz, G. A., Schnabel, R. B., andByrd, R. H.,A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties, SIAM Journal on Numerical Analysis, Vol. 22, pp. 47-67, 1985. · Zbl 0574.65061 · doi:10.1137/0722003
[6]Powell, M. J. D.,Convergence Properties of a Class of Minimization Algorithms, Nonlinear Programming 2, Edited by O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, New York, pp. 1-27, 1975.
[7]Sorensen, D. C.,Newton’s Method with a Model Trust Region Modification, SIAM Journal on Numerical Analysis, Vol. 19, pp. 409-426, 1982. · Zbl 0483.65039 · doi:10.1137/0719026
[8]Steihaug, T.,The Conjugate Gradient Method and Trust Regions in Large-Scale Optimization, SIAM Journal on Numerical Analysis, Vol. 20, pp. 626-637, 1983. · Zbl 0518.65042 · doi:10.1137/0720042
[9]Dennis, J. E., Jr., andMei, H. H. W.,Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values, Journal of Optimization Theory and Applications, Vol. 28, pp. 453-482, 1979. · Zbl 0388.65022 · doi:10.1007/BF00932218
[10]Dennis, J. E., Jr., andSchnabel, R. B.,Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.