zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterizations of strict local minima and necessary conditions for weak sharp minima. (English) Zbl 0797.90101
Summary: In nonlinear programming, sufficient conditions of order m usually identify a special type of local minimizers, here termed a strict local minimizer of order m. It is demonstrated that, if a constraint qualification is satisfied, standard sufficient conditions often characterize this special sort of minimizer. The first- and second-order cases are treated in detail. Necessary conditions for weak sharp local minima of order m, a larger class of local minima, are also presented.

MSC:
90C30Nonlinear programming
References:
[1]Cromme, L.,Strong Uniqueness: A Far Reaching Criterion for the Convergence of Iterative Procedures, Numerische Mathematik, Vol. 29, pp. 179–193, 1978. · Zbl 0352.65012 · doi:10.1007/BF01390337
[2]Auslender, A.,Stability in Mathematical Programming with Nondifferentiable Data, SIAM Journal on Control and Optimization, Vol. 22, pp. 239–254, 1984. · Zbl 0538.49020 · doi:10.1137/0322017
[3]Studniarski, M.,Necessary and Sufficient Conditions for Isolated Local Minima of Nonsmooth Functions, SIAM Journal on Control and Optimization, Vol. 24, pp. 1044–1049, 1986. · Zbl 0604.49017 · doi:10.1137/0324061
[4]Hiriart-Urruty, J. B., Strodiot, J. J., andNguyen, V. H.,Generalized Hessian Matrix and Second-Order Optimality Conditions for Problems with C 1,1 Data, Applied Mathematics and Optimization, Vol. 11, pp. 43–56, 1984. · Zbl 0542.49011 · doi:10.1007/BF01442169
[5]Klatte, D., andTammer, K.,On Second-Order Sufficient Optimality Conditions for C 1,1 Optimization Problems, Optimization, Vol. 19, pp. 169–179, 1988. · Zbl 0647.49014 · doi:10.1080/02331938808843333
[6]Burke, J. V., andFerris, M. C.,Weak Sharp Minima in Mathematical Programming, SIAM Journal on Control and Optimization, Vol. 31, pp. 1340–1359, 1993. · Zbl 0791.90040 · doi:10.1137/0331063
[7]Ward, D. E.,Isotone Tangent Cones and Nonsmooth Optimization, Optimization, Vol. 18, pp. 769–783, 1987. · Zbl 0633.49012 · doi:10.1080/02331938708843290
[8]Ward, D. E.,The Quantificational Tangent Cones, Canadian Journal of Mathematics, Vol. 40, pp. 666–694, 1988. · Zbl 0648.58004 · doi:10.4153/CJM-1988-029-6
[9]Ursescu, C.,Tangent Set’s Calculus and Necessary Conditions for Extremality, SIAM Journal on Control and Optimization, Vol. 20, pp. 563–574, 1982. · Zbl 0488.49009 · doi:10.1137/0320041
[10]Rockafellar, R. T.,First- and Second-Order Epidifferentiability in Nonlinear Programming, Transactions of the American Mathematical Society, Vol. 307, pp. 75–108, 1988. · doi:10.1090/S0002-9947-1988-0936806-9
[11]Ward, D. E.,Exact Penalties and Sufficient Conditions for Optimality in Nonsmooth Optimization, Journal of Optimization Theory and Applications, Vol. 57, pp. 485–499, 1988. · Zbl 0621.90081 · doi:10.1007/BF02346165
[12]Ward, D. E., andBorwein, J. M.,Nonsmooth Calculus in Finite Dimensons, SIAM Journal on Control and Optimization, Vol. 25, 1987, pp. 1312–1340. · Zbl 0633.46043 · doi:10.1137/0325072
[13]Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York, New York, 1968.
[14]Kyparisis, J.,On Uniqueness of Kuhn-Tucker Multipliers in Nonlinear Programming, Mathematical Programming, Vol. 32, pp. 242–246, 1985. · Zbl 0566.90085 · doi:10.1007/BF01586095
[15]Flett, T. M.,Differential Analysis, Cambridge University Press, Cambridge, England, 1980.