[1] | L. G?rding, ?Eigenfunction expansions connected with elliptic differential operators,? in: Tolfte Skandinaviska Matematikerkongressen, Lund, 1953, pp. 44-55 (1954). |

[2] | V. A. Il’in, ?On a generalized interpretation of the principle of localization for Fourier series with respect to fundamental systems of functions,? Sib. Mat. Zh.,9, No. 5, 1093-1106 (1968). |

[3] | P. Sj?lin, ?Regularity and integrability of spherical means,? Monatsh. Math.,96, No. 4, 277-291 (1983). · Zbl 0519.42018 · doi:10.1007/BF01471211 |

[4] | A. J. Bastys [A. Bastis], ?The generalized localization principle for an N-fold Fourier integral,? Dokl. Akad. Nauk SSSR,278, No. 4, 777-778 (1984). |

[5] | K. I. Babenko, ?On the summability and the convergence of the expansions in the eigenfunctions of a differential operator,? Mat. Sb.,91, No. 2, 147-201 (1973). |

[6] | Sh. A. Alimov, V. A. Il’in, and E. M. Nikishin, ?Questions on the convergence of multiple trigonometric series and spectral expansions. I,? Usp. Mat. Nauk,31, No. 6, 28-82 (1976). |

[7] | A. J. Bastys [A. Bastis], ?On the generalized localization principle for an N-fold Fourier integral in the classes Lp,? Dokl. Akad. Nauk SSSR,304, No. 3, 526-529 (1989). |

[8] | C. Fefferman, ?The multiplier problem for the ball,? Ann. Math.,94, No. 2, 330-336 (1971). · Zbl 0234.42009 · doi:10.2307/1970864 |

[9] | H. Busemann and W. Feller, Differentiation der L-Integrale,? Fund. Math.,22, 226-256 (1934). |

[10] | A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, Cambridge (1959). |

[11] | V. A. Il’in, ?On the expansion of functions with singularities into a conditionally convergent series of eigenfunctions,? Izv. Akad. Nauk SSSR, Ser. Mat.,22, 49-80 (1958). |

[12] | G. N. Watson, A Treatise on the Theory of Bessel Functions, Macmillan, New York (1944). |

[13] | Handbook of Special Functions [in Russian], Nauka, Moscow (1979). |

[14] | E. M. Nikishin, ?Resonance theorems and functional series,? Doctoral Dissertation, Moscow State University, Mowcow (1971). |