zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wavelet-Galerkin solutions for one-dimensional partial differential equations. (English) Zbl 0813.65106

This paper describes how wavelets can be used for solving partial differentiation equations by considering the one-dimensional counterpart of Helmholtz’s equation. This technique necessitates the solution of linear systems of equations in the wavelet space rather than the physical space which implies a transform of the right-hand side into wavelet space and a transform of the solution back into physical space.

Because, for this problem, the ensuing linear system is circulant it can be efficiently solved by a convolution approach and fast Fourier transforms. Numerical results suggest that wavelet solutions converge much faster than finite difference solutions and the gains in accuracy outweights the additional computation effort. In addition, because wavelets are localized in space, adaptive mesh refinement strategies can be efficiently implemented.

MSC:
65L10Boundary value problems for ODE (numerical methods)
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
34B05Linear boundary value problems for ODE