zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A mollification method for ill-posed problems. (English) Zbl 0817.65041

The author develops a general theory of mollification for approximate solution of ill-posed linear problems in Banach space. For a given family of subspaces on which the problem is well-posed the idea is to construct a corresponding family of mollification operators which map the problem into a well-posed problem on the subspace. This is accomplished by minimizing an appropriate functional.

Error estimates and optimal or “quasi-optimal” parameter choice strategies are established and the method is applied to problems of numerical differentiation, parabolic equations reversed in time, Cauchy problems for the Laplace equation, and other problems. In addition, new Hölder type estimates are established for the backward heat equation and for certain non-characteristic Cauchy problems for parabolic equations.

65J10Equations with linear operators (numerical methods)
65J20Improperly posed problems; regularization (numerical methods in abstract spaces)
47A50Equations and inequalities involving linear operators, with vector unknowns
65D25Numerical differentiation
35R35Free boundary problems for PDE
65M30Improperly posed problems (IVP of PDE, numerical methods)