*(English)*Zbl 0818.03031

The author claims here that gravitation theory (because it takes ‘the entire universe into account’) cannot allow an observer/observed distinction, and so cannot use ‘quantum logic’. This claim is unfortunately not further developed but serves as the starting point for investigating a non-Boolean but distributive ‘quantum logic’.

The bulk of this paper, section 4, is devoted to investigating the structure of such a logic, and the author adopts a relatively pseudocomplemented system in which distribution holds but both Excluded Middle and Double Negation fail, apparently an intuitionist logic represented by a Heyting algebra. The paper also includes discussion of modal extensions of the system, and of Kripke semantics developed using a non-symmetric accessibility relation. The ‘essential theorem’ of the paper is apparently that the intuitionist logic is an ‘extension of quantum logics’. This seems a peculiar result given that quantum logics are by definition here non-distributive, and the author himself has commented that to lose both distributivity and complementation is uninteresting. Discussion of ‘quantum nets’, topoi based on fuzzy sets, and Yang-Mills fields follows.

This paper is very wide-ranging and here lies its greatest weakness. Certainly it is at times confused and lacking in rigour. For example we are told “in a general Heyting algebra the list of logical connectives $\wedge $, $\vee $, $\Rightarrow $, $\iff $, $\neg $, $\forall $, $\exists $, is not redundant as in the case of classical logic...”. Such claims are not followed up by proper clarification and there is throughout a confusion of algebraic and logical terms. In fact many foundational terms are undefined – we are told for instance how to define a formal language with a set of rules including an alphabet and rules of formation, yet no such definitions are provided for the formal languages used here. However, the paper has many interesting excursions, including discussion of a wide range of mathematical models (e.g. from graph theory, topology) for his systems. It also includes a very extensive bibliography.

##### MSC:

03G12 | Quantum logic |

06D20 | Heyting algebras |

81P10 | Logical foundations of quantum mechanics; quantum logic |

03B20 | Subsystems of classical logic |

##### Keywords:

non-Boolean quantum logic; gravitation; relatively pseudocomplemented system; intuitionist logic; Heyting algebra; Kripke semantics##### References:

[1] | Antonsen, F. (1992). Pregeometry, Thesis, Niels Bohr Institute, University of Copenhagen, unpublished. |

[2] | Antonsen, F. (1994).International Journal of Theoretical Physics,33, 1189-1205. · Zbl 0798.05051 · doi:10.1007/BF00670785 |

[3] | Antonsen, F. (n.d.). Models of pregeometry, InProceedings of the 2nd A. A. Friedmann International Seminar on Gravitation and Cosmology, St. Petersburg, 1992, to appear. |

[4] | Bell, J. L. (1988).Topases and Local Set Theories: An Introduction, Clarendon Press, Oxford. |

[5] | Binder, J. and Pták, P. (1990).Acta Universitatis Carolinae Mathematica et Physica,31, 21-26. |

[6] | Bombelli, L., and Meyer, D. A. (1989).Physics Letters A,141, 226-228. · doi:10.1016/0375-9601(89)90474-X |

[7] | Bombelli, L., Lee, L., Meyer, D., and Sorkin, R. D. (1987).Physical Review Letters,59, 521-524. · doi:10.1103/PhysRevLett.59.521 |

[8] | Borchers, H.-J., and Sen, R. N. (1990).Communications in Mathematical Physics,132, 593-611. · Zbl 0725.54026 · doi:10.1007/BF02156539 |

[9] | Brightwell, G., and Gregory, R. (1991).Physical Review Letters,66, 260-263. · Zbl 0968.83509 · doi:10.1103/PhysRevLett.66.260 |

[10] | Chapman, J., and Rowbotton, F. (1992).Relative Category Theory and Geometric Mor-Phisms?A Logical Approach, Clarendon Press, Oxford. |

[11] | Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. (1982).Analysis, Manifolds and Physics (2nd edition), North-Holland, Amsterdam. |

[12] | Doebner, H. D., and Lücke, W. (1991).Journal of Mathematical Physics,32, 250-253. · Zbl 0744.03060 · doi:10.1063/1.529127 |

[13] | Dummet, M. (1977).Elements of Intuitionism, Clarendon Press, Oxford. |

[14] | Finkelstein, D. (1987).International Journal of Theoretical Physics,27, 473-519. · Zbl 0651.53064 · doi:10.1007/BF00669395 |

[15] | Finkelstein, D. (1989).International Journal of Theoretical Physics,28, 441-467. · doi:10.1007/BF00673296 |

[16] | Finkelstein, D., and Finkelstein, S. R. (1983).International Journal of Theoretical Physics,22, 753-779. · Zbl 0533.03013 · doi:10.1007/BF02085960 |

[17] | Finkelstein, D., and Hallidy, W. H. (1991).International Journal of Theoretical Physics,30, 463-486. · Zbl 0743.03038 · doi:10.1007/BF00672892 |

[18] | Froggat, C., and Nielsen, H. B. (1991).Origin of Symmetries, World Scientific, Singapore. |

[19] | Garden, R. W. (1984).Modern Logic and Quantum Mechanics, Adam Hilger, Bristol. |

[20] | Göckeler, M., and Schücker, T. (1989).Differential Geometry, Gauge Theory, and Gravity, Cambridge University Press, Cambridge. |

[21] | Goldblatt, R. (1984).Topoi. The Categorial Analysis of Logic (revised edition), North-Holland, Amsterdam. |

[22] | Gudder, S. (1979).Stochastic Methods in Quantum Mechanics, North-Holland, Amsterdam. |

[23] | Haag, R., and Kastler, D. (1964).Journal of Mathematical Physics,5, 848-861. · Zbl 0139.46003 · doi:10.1063/1.1704187 |

[24] | Hawking, S., and Ellis, J. (1973).The Large-Scale Structure of Space-Time, Cambridge University Press, Cambridge. |

[25] | Kelley, J. L. (1975).General Topology, Springer-Verlag, Berlin. |

[26] | Kleene, S. (1980).Introduction to Metamathematics, North-Holland, Amsterdam. |

[27] | Müller, A. (1992).Communications in Mathematical Physics,149, 495-512. · Zbl 0787.58005 · doi:10.1007/BF02096940 |

[28] | Nielsen, H. B., and Brene, N. (n.d.). Gauge glass, NBI-HE-84-47. |

[29] | Pitowsky, I. (1989).Quantum Probability ?Quantum Logic, Springer-Verlag, Berlin. |

[30] | Preuss, G. (1988).Theory of Topological Structure. An Approach to Categorial Topology, Reidel, Dordrecht. |

[31] | Pulmannová, S., and Majernik, V. (1992).Journal of Mathematical Physics,33(6), 2173-2178. · Zbl 0771.03022 · doi:10.1063/1.529638 |

[32] | Rosenthal, K. I., and Niefield, S. B. (1989). Connections between ideal theory and the theory of locales,Annals of the New York Academy of Sciences,552, 138-151, and references therein. · doi:10.1111/j.1749-6632.1989.tb22393.x |

[33] | Rudin, W. (1973).Functional Analysis, McGraw-Hill, New York. |

[34] | ?ostak, A. P. (1990).Radovi Matemati?ki,6, 249-263. |

[35] | t’Hooft, G. (1990).Nuclear Physics B,342, 471-485. · doi:10.1016/0550-3213(90)90323-6 |

[36] | Troesltra, A. S., and van Dalen, D. (1988).Constructivism in Mathematics: An Introduction I?II, North-Holland, Amsterdam. |

[37] | Varadarajan, V. S. (1985).Geometry of Quantum Theory, Springer-Verlag, New York. |

[38] | Vickers, S. (1989).Topology via Logic, Cambridge University Press, Cambridge. |

[39] | Warner, F. K. (1983).Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York. |

[40] | Woodhouse, N. M. J. (1973).Journal of Mathematical Physics,14, 495-501. · Zbl 0269.53026 · doi:10.1063/1.1666344 |