zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Consistent parameter estimation for partially observed diffusions with small noise. (English) Zbl 0822.62068
Summary: We provide a consistency result for the MLE for partially observed diffusion processes with small noise intensities. We prove that if the underlying deterministic system enjoys an identifiability property, then any MLE is close to the true parameter if the noise intensities are small enough. The proof uses large deviations limits obtained by PDE vanishing viscosity methods. A deterministic method of parameter estimation is formulated. We also specialize our results to a binary detection problem, and compare deterministic and stochastic notions of identifiability.
62M05Markov processes: estimation
62F12Asymptotic properties of parametric estimators
93E11Filtering in stochastic control
93E10Estimation and detection in stochastic control
60F10Large deviations
[1]Baras, J. S., and La Vigna, A. (1987), Real-time sequential hypothesis testing for diffusion signals, Proc. 26th IEEE CDC, Los Angeles, 1987, pp. 1153-1157, IEEE Press, New York.
[2]Barles, G., and Perthame, B. (1987), Discontinuous solutions of deterministic optimal stopping time problems, Modél. Math. Anal. Numér. 21:557-579.
[3]Campillo, F., and Le Gland, F. (1989), MLE for partially observed diffusions: direct maximization vs. the EM algorithm, Stochastic Process. Appl. 33:245-274. · Zbl 0709.62076 · doi:10.1016/0304-4149(89)90041-0
[4]Clark, J. M. C. (1978), The design of robust approximations to the stochastic differential equations of non-linear filtering, in: Communication Systems and Random Processes Theory (ed. J. K. Skwirzynski), pp. 721-734, Sijthoff and Nordhoff, Alphen aan den Rijn.
[5]Crandall, M. G., Evans, L. C., and Lions, P. L. (1984), Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282:487-502. · doi:10.1090/S0002-9947-1984-0732102-X
[6]Crandall, M. G., and Lions, P. L. (1983), Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277:1-42. · doi:10.1090/S0002-9947-1983-0690039-8
[7]Davis, M. H. A. (1980), On a multiplicative functional transformation arising in non-linear filtering theory, Z. Wahrsch. Verw. Gebiete 54:125-139. · Zbl 0431.60043 · doi:10.1007/BF00531444
[8]Dembo, A., and Zeitouni, O. (1986), Parameter estimation of partially observed continuous-time stochastic processes via the EM algorithm, Stochastic Process. Appl. 23:91-113. · Zbl 0608.62095 · doi:10.1016/0304-4149(86)90018-9
[9]Elliott, R. J. (1982), Stochastic Calculus and Applications, Springer-Verlag, New York.
[10]Evans, L. C., and Ishii, H. (1985), A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2:1-20.
[11]Fleming, W. H., and Mitter, S. K. (1982), Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics 8:63-77.
[12]Freidlin, M. I., and Wentzell, A. D. (1984), Random Perturbations of Dynamical Systems, Springer-Verlag, New York.
[13]Friedman, A. V. (1964), Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ.
[14]Hijab, O. (1984), Asymptotic Bayesian estimation of a first order equation with small diffusion, Ann. Probab. 12:890-902. · Zbl 0543.60034 · doi:10.1214/aop/1176993238
[15]James, M. R. (1988), Asymptotic Nonlinear Filtering and Large Deviations with Application to Observer Design, Ph.D. Dissertation, University of Maryland (SRC Technical Report PhD-88-1, Systems Research Center).
[16]James, M. R. (1991), Finite time observer désign by probabilistic-variational methods, SIAM J. Control Optim. 29:954-967. · Zbl 0733.93011 · doi:10.1137/0329053
[17]James, M. R., and Baras, J. S. (1988), Nonlinear filtering and large deviations: a PDE-control theoretic approach, Stochastics 23:391-412.
[18]Pardoux, E. (1991), Filtrage non-linéaire et équations aux dérivées partielles stochastiques associées, in: Ecole d’Eté de Probabilités de Saint-Flour XIX, 1989 (ed. P. L. Hennequin), pp. 69-163 (LNM, 1464), Springer-Verlag, New York.