zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bayesian model choice via Markov chain Monte Carlo methods. (English) Zbl 0827.62027

Summary: Markov chain Monte Carlo (MCMC) integration methods enable the fitting of models of virtually unlimited complexity, and as such have revolutionized the practice of Bayesian data analysis. However, comparison across models may not proceed in a completely analogous fashion, owing to violations of the conditions sufficient to ensure convergence of the Markov chain.

We present a framework for Bayesian model choice, along with an MCMC algorithm that does not suffer from convergence difficulties. Our algorithm applies equally well to problems where only one model is contemplated but its proper size is not known at the outset, such as problems involving integer-valued parameters, multiple changepoints or finite mixture distributions. We illustrate our approach with two published examples.

62F15Bayesian inference
65C99Probabilistic methods, simulation and stochastic differential equations (numerical analysis)