zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Topological quantum field theory and invariants of graphs for quantum groups. (English) Zbl 0828.57012
Summary: On the basis of generalized 6j-symbols we give a formulation of topological quantum field theories for 3-manifolds including observables in the form of coloured graphs. It is shown that the 6j-symbols associated with deformations of the classical groups at primitive even roots of unity provide examples of this construction. Calculational methods are developed which, in particlar, yield the dimensions of the state spaces as well as a rather simple proof of the relation, previously found by Turaev and Walker for the case of U q (sl(2,)), between these models and corresponding ones based on the ribbon graph construction of Reshetikhin and Turaev.
57N10Topology of general 3-manifolds
81T40Two-dimensional field theories, conformal field theories, etc.
81R50Quantum groups and related algebraic methods in quantum theory
[1][A] Andersen, H.H.: Tensor products of quantized tilting modules. Commun. math. Phys.149, 149 (1992) · Zbl 0760.17004 · doi:10.1007/BF02096627
[2][At] Atiyah, M.: Topological quantum field theories. Publ. Math. I.H.E.S.68, 175 (1989)
[3][D] Durhuus, B.: A discrete approach to topological quantum field theories. J. Geom. and Phys.11, 155 (1993) · Zbl 0795.17035 · doi:10.1016/0393-0440(93)90051-F
[4][DJN] Durhuus, B., Jakobsen, H., Nest, R.: Topological quantum field theories from generalized 6j-symbols. Rev. Math. Phys.5, 1 (1993) · Zbl 0808.57010 · doi:10.1142/S0129055X93000024
[5][Dr] Drinfeld, V.G.: Quantum groups. Proc. of ICM Berkeley 1986. Providence, R.I.,1 (1987)
[6][FG] Felder, G., Grandjean, O.: On combinatorial three-manifold invariant. Preprint (1992)
[7][KMS] Karowski, M., Müller, W., Schrader, R.: State sum invariants of compact 3-manifolds with boundary and 6j-symbols. J. Phys. A25, 4847 (1992) · Zbl 0772.57023 · doi:10.1088/0305-4470/25/18/018
[8][KS] Karowski, M., Schrader, R.: A combinatorial approach to topological quantum field theories and invariants of graphs. Commun. Math. Phys.151, 355 (1993) · Zbl 0768.57009 · doi:10.1007/BF02096773
[9][KS1] Karowski, M., Schrader R.: Private communication
[10][N] Nill, F.: Private communication
[11][RT1] Reshetikhin, N., Turaev, V.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys.127, 26 (1990) · Zbl 0768.57003 · doi:10.1007/BF02096491
[12][RT2] Reshetikhin, N., Turaev, V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[13][T] Turaev, V.: Quantum invariants of 3-manifolds I. Preprint 509/p-295, Strasbourg, (1992) to be published in Quantum invariants of 3-manifolds, Berlin: Walter de Gruyter, 1994
[14][T1] Turaev, V.: Topology of shadows. Preprint (1991)
[15][T2] Turaev, V.: Quantum invariants of links and 3-valent graphs in 3-manifolds. Publ. IHES 77, 121 (1993)
[16][TV] Turaev, V., Viro, O.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology31, 865 (1992) · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[17][TW] Turaev, V., Wenzl, H.: Quantum invariants of 3-manifolds associated with classical simple Lie algebras. Int. J. Math.4, 323 (1991) · Zbl 0784.57007 · doi:10.1142/S0129167X93000170
[18][V] Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys.B300, 360 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[19][Wa] Walker, K.: On Witten’s 3-manifold invariants. Preprint (1991)
[20][Wi1] Witten, E.: Topological quantum field theory. Commun. Math. Phys.117, 353 (1988) · Zbl 0656.53078 · doi:10.1007/BF01223371
[21][Wi2] Witten, E.: Quantum field theory and the Jones polynomial Commun. Math. Phys.121, 351 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730