zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite element Galerkin solutions for the Rosenau equation. (English) Zbl 0830.65097
Finite element Galerkin approximate solutions for a KdV-like Rosenau equation which models the dynamics of dense discrete systems are considered. Existence and uniqueness of exact solutions are shown and the error estimates of the continuous time Galerkin solutions are discussed. For the fully discrete time Galerkin solutions, we consider the backward Euler method which results in the first-order convergence in the temporal direction. For the second-order convergence in time, we consider a three- level backward method and the Crank-Nicolson method which give optimal convergence in the spatial direction.
MSC:
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M06Finite difference methods (IVP of PDE)
65M20Method of lines (IVP of PDE)
65M15Error bounds (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations