zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hamiltonian operators and associative algebras with a derivation. (English) Zbl 0837.16034
Summary: We prove that an algebraic structure proposed by I. M. Gel’fand and I. Ya. Dorfman [Funct. Anal. Appl. 13, 248–262 (1980); translation from Funkts. Anal. Prilozh. 13, No. 4, 13–30 (1979; Zbl 0428.58009)] in studying Hamiltonian operators is equivalent to an associative algebra with a derivation under a unitary condition.
16W25Derivations, actions of Lie algebras (associative rings and algebras)
37K30Relations of infinite-dimensional systems with algebraic structures
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
[1]Balinskii, A. A. and Novikov, S. P.: English transl.Soviet Math. Dokl. 32, 228-231 (1985).
[2]Dolan, L., Goddard, P., and Montague, P.:Nuclear Phys. B338, 529-601 (1990).
[3]Gel’fand, I. M. and Dikii, L. A.:Russian Math. Surveys 30(5), 77-113 (1975). · Zbl 0334.58007 · doi:10.1070/RM1975v030n05ABEH001522
[4]Gel’fand, I. M. and Dikii, L. A.:Funct. Anal. Appl. 10, 16-22 (1976). · Zbl 0347.49023 · doi:10.1007/BF01075767
[5]Gel’fand, I. M. and Dorfman, I. Ya.:Funct. Anal. Appl. 13, 248-262 (1979). · Zbl 0437.58009 · doi:10.1007/BF01078363