zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wonderful models of subspace arrangements. (English) Zbl 0842.14038
In this paper we construct a canonical blow up of a configuration of linear subspaces of projective space, in which the boundary divisor has normal crossings. This is achieved by defining the notion of irreducible subspaces and nested sets. The example of root systems is extensively discussed. The construction generalizes the model for configuration space by Fulton and MacPherson.
Reviewer: C.Procesi (Roma)

14N10Enumerative problems (algebraic geometry)
17B67Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
[1]C. De Concini and C. Procesi.Hyperplane arrangements and holonomy equations. Selecta Math., (to appear) (1995).
[2]P. Deligne.Théorie de Hodge II. Publ. Math. I H E S,40 (1971), 5–58.
[3]V. G. Drinfeld. On quasi triangular quasi-Hopf algebras and a group closely connected with Gal . Leningrad Math. J.,2 (1991), 829–860.
[4]R. Fulton and R. MacPherson.A compactification of configuration space. Annals of Math.,139 (1994), 183–225. · Zbl 0820.14037 · doi:10.2307/2946631
[5]M. Goresky and R. MacPherson.Stratified Morse Theory Springer Verlag (1988).
[6]S. Keel.Intersection theory of moduli space of stable N-pointed curves of genus0. T.A.M.S.,330 (1992), 545–574. · Zbl 0768.14002 · doi:10.2307/2153922
[7]V.G. Knizhnik and A.B. Zamolodchikov.Current algebra and the Wess-Zumino model in two dimensions. Soviet J. of nuclear Physics,247 (1984), 83–103. · Zbl 0661.17020 · doi:10.1016/0550-3213(84)90374-2
[8]J. Morgan.The algebraic topology of smooth algebraic varieties. Publ. Math. I H E S,48 (1978), 137–204.
[9]P. Orlik and L. Solomon.Combinatorics and Topology of Complements of Hyperplanes. Inventiones Math.,56 (1980), 167–189. · Zbl 0432.14016 · doi:10.1007/BF01392549