zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the asymptotic stability for a two-dimensional linear nonautonomous differential system. (English) Zbl 0844.34050
This paper presents an analysis of the asymptotic stability of the system of differential equations x ' =-r(t)x+q(t)y, y ' =-q(t)x-p(t)y, where t0 and the scalar functions p,q,r are piecewise continuous and nonnegative. A simple condition to ensure asymptotic stability is 0 min(p(t),r(t))dt=+. The paper works out several other results which use the milder assumption 0 p(t)dt=+, together with elaborate conditions of integral type. As these conditions are somewhat technical, the author presents several alternatives, which are less general but easier to use in applications. Comparison with known criteria are given. The method of proof is a combination of the method of Lyapunov functions and of the theory of differential inequalities.
34D20Stability of ODE