zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal control of singular systems with a cost on changing control. (English) Zbl 0845.49015
Summary: We consider a class of optimal control problems with a cost on changing control, where the system dynamics are described by singular differential equations. Using a constraint transcription coupled with a local smoothing technique, a penalty function, and the control parametrization technique, an efficient computational method is developed for solving this optimal control problem sequentially. The convergence performance of the proposed method is also established. For illustration, this method is used to find the optimal feeding policy for a fed-batch fermentation process.
MSC:
49M15Newton-type methods in calculus of variations
49J15Optimal control problems with ODE (existence)
Software:
MISER3
References:
[1]Ahmed, N. U.,Elements of Finite Dimensional Systems and Control Theory, Longman Scientific and Technical: Essex, 1988.
[2]Brenan, K. E., Campbell, S. L., and Petzold, L. R.,Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland: New York, 1989.
[3]Bryson, A. E., and Ho, Y. C.,Applied Optimal Control, Halstead Press: New York, 1969.
[4]Carelli, R. and Kelly, R., ”Adaptive control of constrained robots modelled by singular systems,”Proc. 28th IEEE Conference on Decision and Control, vol. 3, pp. 2635–2640, 1989. · doi:10.1109/CDC.1989.70657
[5]Cesari, L.,Optimization–Theory and Applications, Springer-Verlag: New York, 1983.
[6]Chen, C. T. and Hwang, C., ”Optimal control computation for differential-algebraic process systems with general constraints”,Chemical Engineering Communications, vol. 97, pp. 9–26, 1990. · doi:10.1080/00986449008911501
[7]Dai, L.,Singular Control Systems, Springer-Verlag: Berlin, 1989.
[8]Gear, C. W., ”Differential-algebraic equation index transformations”,SIAM J. Scientific and Statistical Computing, vol. 9, pp. 39–47, 1988. · Zbl 0637.65072 · doi:10.1137/0909004
[9]Goh, C. J. and Teo, K. L., ”Control parametrization: a unified approach to optimal control problems with general constraints”,Automatica, vol. 24, pp. 3–18, 1988. · Zbl 0637.49017 · doi:10.1016/0005-1098(88)90003-9
[10]Gullun, S. E. and Holland, C. D., ”Gear’s procedure for the simultaneous solution of differential and algebraic equations with application to unsteady state distillation problems”,Computers and Chemical Engineering, vol. 6, pp. 231–244, 1982. · doi:10.1016/0098-1354(82)80014-8
[11]Hasdorff, L.,Gradient Optimisation and Nonlinear Control, John Wiley:, New York, 1976.
[12]Hindmarsh, A. C., ”ODEPACK, a systematised collection of ODE solvers”,Scientific Computing, R. S. Stepleman et al. (Eds.), North-Holland: Amsterdam, pp. 55–64, 1983.
[13]Hong, J., ”Optimal substrate feeding policy for a fed batch fermentation with substrate and product inhibition kinetics”,Biotechnology and Bioengineering, vol. 28, pp. 1421–1431, 1986. · doi:10.1002/bit.260280916
[14]Jennings, L. S., Fisher, M. E., Teo, K. L., and Goh, C. J., ”MISERS: Solving Optimal Control Problems-an Update”,Advances in Engineering Software and Workstations, vol. 13, pp. 190–196, 1990. · Zbl 0746.49024 · doi:10.1016/0961-3552(91)90016-W
[15]Lewis, F. L., and Fountain, D. W., ”Some singular systems applications in circuit theory”,Proc. 1990 IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1380–1384, 1990. · doi:10.1109/ISCAS.1990.112388
[16]Miele, A., ”Gradient Algorithms for the Optimization of Dynamic Systems”, In C. T. Leondes (ed.),Control and Dynamic Systems: Advances in Theory and Applications, Academic Press: New York, pp. 1–52, 1980.
[17]Miele, A., and Wang, T., ”Primal-Dual Properties of Sequential Gradient-Restoration Algorithms for Optimal Control Problems, Part 1, Basic Problems”, In F. R. Payne et al. (ed.)Integral Methods in Science and Engineering, Hemisphere Publishing Corporation: Washington, DC, pp. 577–607, 1986.
[18]Miele, A,. and Wang, T., ”Primal-Dual Properties of Sequential Gradient-Restoration Algorithms for Optimal Control Problems, Part 2, General Problem”,Journal of Mathematical Analysis and Applications, vol. 119, no. (1-2), pp. 21–54, 1986. · Zbl 0621.49021 · doi:10.1016/0022-247X(86)90142-3
[19]Polak, E.,Computational Methods in Optimization. Academic Press: New York, 1971.
[20]Polak, E., and Maine, D. Q., ”A Feasible Directions Algorithm for Optimal Control Problems with Control and Terminal Inequality Constraints”,IEEE Transactions on Automatic Control, vol. 9C-22, pp. 741–751, 1977. · Zbl 0364.49012 · doi:10.1109/TAC.1977.1101593
[21]Teo, K. L., and Jennings, L. S., ”Optimal control with a cost on changing control,”J. Optimisation Theory and Applications, vol. 68, pp. 335–357, 1991. · Zbl 0697.49030 · doi:10.1007/BF00941572
[22]Teo, K. L., Goh, C. J., and Wong, K. H.,A Unified Computational Approach to Optimal Control Problems, Longman Scientific Technical: London, 1991.
[23]Teo, K. L., Rehbock, V., and Jennings, L. S., ”A new computational algorithm for functional inequality constrained optimisation problems”,Automatica, vol. 29, pp. 789–792, 1993. · Zbl 0775.49003 · doi:10.1016/0005-1098(93)90076-6