zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric convergence rates for stochastically ordered Markov chains. (English) Zbl 0847.60053

Summary: Let {Φ n } be a Markov chain on the state space [0,) that is stochastically ordered in its initial state; that is, a stochastically larger initial state produces a stochastically larger chain at all other times. Examples of such chains include random walks, the number of customers in various queueing systems, and a plethora of storage processes. A large body of recent literature concentrates on establishing geometric ergodicity of {Φ n } in total variation; that is, proving the existence of a limiting probability measure π and a number r>1 such that

lim n r n sup A[0,) P x [Φ n A] - π (A)=0

for every deterministic initial state Φ 0 x. We seek to identify the largest r that satisfies this relationship. A dependent sample path coupling and a Foster-Lyapunov drift inequality are used to derive convergence rate bounds; we then show that the bounds obtained are frequently the best possible. Application of the methods to queues and random walks are included.

60J25Continuous-time Markov processes on general state spaces
60K25Queueing theory