zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hyperplane arrangements and holonomy equations. (English) Zbl 0848.18004
In this beautifully written paper, the authors study the solutions of the Knizhnik-Zamolodchikov equation associated to some hyperplane arrangements and made an important contribution to the subject. Firstly, a convenient framework for hyperplane arrangements was set up to handle the combinatorics. Then, using this framework, they recovered some of the fundamental results of Drinfeld’s theory, for example the Drinfeld associatior in quantum group. In the case of the hyperplane arrangements associated to a root system, they gave a description of the monodromy representation which can be regarded as an extension of the result of A. Kono for the root system A n . Finally, they explained how the universal Vassiliev invariants constructed by M. Kontsevich can be viewed as values of certain monodromy. Many of the above topics can be found in separate treatments by others and often in some abstract categorical framework. The advantage of the authors’ approach is that it presents these topics from a uniform and geometric viewpoint.

18D10Monoidal, symmetric monoidal and braided categories
17B37Quantum groups and related deformations
57M25Knots and links in the 3-sphere
[1]K. Aomoto. Functions hyperlogarithmiques et groupes de monodromie unipotents. J. Fac. Univ. Tokyo25 (1978), 149–156.
[2]V.I. Arnold.The Vassiliev theory of discriminants and knots. in First European congress of Mathematics, Birkhäuser Basel, 1994.
[3]D. Bar Natan.On the Vassiliev knot invariants. Topology,34 (1995), 423–472. · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[4]D. Bar Natan.Non-associative tangles. Harvard preprint (1993).
[5]N. BourbakiGroupes et algèbres de Lie Ch 4-5-6. Hermann, Paris, 1981.
[6]E. Brieskorn.Sur les groupes de tresses (d’après V I Arnold). Séminaire Bourbaki 1971/72, S.L.N.317 (1973).
[7]E. Brieskorn. Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Inv. Math.,12 (1971) 57–61. · Zbl 0204.56502 · doi:10.1007/BF01389827
[8]P. Cartier. Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds. C.R. Acad. Sci. Paris, Sér. I Math.,316 (1993) 1205–1210.
[9]K.T. Chen.Iterated integrals of differential forms and loop space cohomology. Ann. of Math., (1973) 217–246.
[10]I.V. Cherednik.Generalized Braid Groups and local r-matrix systems. Doklady Akad. Nauk SSSR,307 (1989) 27–34.
[11]I.V. CherednikMonodromy Representations for Generalized Knizhnik-Zamolodchikov Equations and Hecke Algebras. Publ. RIMS, Kyoto Univ.27 (1991) 711–726. · Zbl 0753.17035 · doi:10.2977/prims/1195169268
[12]C. De Concini and C. Procesi.Wonderful models of subspace arrangements. Selecta Math., (to appear) (1995).
[13]P. Deligne. Les immeubles de groupes de tresses généralisés. Invent. Math.,17 (1972) 273–302. · Zbl 0238.20034 · doi:10.1007/BF01406236
[14]P. Deligne. Le groupe fondamental de la droite projective moins trois points. In ”Galois groups over ”, ed. Ihara, Ribet, Serre, Publ. M.S.R.I,16 (1987) 79–298.
[15]P. Deligne.Théorie de Hodge II. Publ. Math. I.H.E.S.,40 (1971) 5–58.
[16]V.G. Drinfeld.Quasi Hopf algebras. Leningrad Math. J.,1 (1990) 1419–1457.
[17]V. G. Drinfeld.On quasi triangular quasi-Hopf algebras and a group closely connected with Gal . Leningrad Math. J.,2 (1991), 829–860.
[18]J. Humphreys.Reflection groups and Coxeter groups. Cambridge Studies in Adv. Math.,29 (1992).
[19]M. Kontsevich.Vassiliev’s knot invariants. Advances in Soviet Math.,16 (1993) 137–150.
[20]C. Kassel.Quantum Groups. Graduate texts in Math., Springer155 (1995)
[21]S. Keel.Intersection theory of moduli space of stable N-pointed curves of genus 0. T.A.M.S.,330 (1992), 545–574. · Zbl 0768.14002 · doi:10.2307/2153922
[22]T. Khono.On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces. Nagoya Math. J.,93 (1983) 21–37.
[23]T. Khono.Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier,37 (1987) 139–160.
[24]M.M. KapranovThe permutoassociahedron, Mac Lane’s coherence theorem and asymptotic zones for the K-Z equation. J. Pure and Appl. Alg.85 (1993) 119–142. · Zbl 0812.18003 · doi:10.1016/0022-4049(93)90049-Y
[25]V.G. Knizhnik and A.B. Zamolodchikov.Current algebra and the Wess-Zumino model in two dimensions. Soviet J. of nuclear Physics,247 (1984), 83–103. · Zbl 0661.17020 · doi:10.1016/0550-3213(84)90374-2
[26]J.A. Lappo-Danilevsky.Mémoires sur la théorie des systèmes différentiels linéaires. Chelsea Publ. N.Y. (1953)
[27]T.Q.T. Le and J. Murakani.Representations of the category of tangles by Kontsevich’s iterated integral. Max-Planck-Institut Bonn, preprint.
[28]S. Piunikhin.Combinatorial expression for universal Vassiliev’s link invariant. Harvard Univ. preprint (1993).
[29]V.A. Vassiliev.Complements of discriminants of smooth maps. A. M. S. Transl.98 (1992).
[30]E.T. Whittaker and G.N. Watson.A course in modern analysis. Cambridge Univ. Press, 4th ed. (1962).