[1] | R. C. Bradley, W. Bryc and S. Janson, On dominations between measures of dependence. J. Mult. Anal., 3 (1987), 312-329. · Zbl 0627.60009 · doi:10.1016/0047-259X(87)90160-6 |

[2] | T. Birkel, Laws of large numbers under dependence assumptions, Statist. Probab. Lett., 7 (1992), 17-20. · Zbl 0661.60048 · doi:10.1016/0167-7152(88)90080-6 |

[3] | T.K. Chandra, Extensions of Rajchman’s strong law of large numbers, Sankhy?, Ser. A 53 (1991), 118-121. |

[4] | T. K. Chandra and S. Ghosal, Some elementary strong laws of large numbers: a review, Tech. Report, Indian Statistical Institute (1993). |

[5] | Y. S. Chow and H. Teicher, Probability Theory: Indepedence, Interchangeability, Martingales, Second Edition, Springer-Verlag (New York, 1988). |

[6] | J. L. Doob, Stochastic Processes, John Wiley, (New York, 1953). |

[7] | E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 43 (1966), 1137-1153. · Zbl 0146.40601 · doi:10.1214/aoms/1177699260 |

[8] | P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett., 15, (1992), 209-213. · Zbl 0925.60024 · doi:10.1016/0167-7152(92)90191-7 |

[9] | D. L. McLeish, A maximal inequality and dependent strong laws, Ann. Probab., 3 (1975), 829-839. · Zbl 0353.60035 · doi:10.1214/aop/1176996269 |

[10] | M. Rosenblatt, Markov Processes, Structure and Asymptotic Behavior, Springer-Verlag (New York, 1971). |

[11] | W. F. Stout, Almost Sure Convergence, Academic Press (New York, 1974). |